Markovian analysisof a stay process in ahospital of third level ofcomplexity

Authors

  • Reyla Moreno B
  • Rafael Barreto A
  • Dania Mora M
  • María Morales Z
  • Fernando Rivas P

DOI:

https://doi.org/10.17533/udea.rfnsp.709

Keywords:

Length of stay, Markov chains, trauma, absorbing barriers

Abstract

Objective: to estimate the expected number of trauma patients in hospitalization services, surgery, intensive care unit and alive and dead discharge conditions after admission in the emergency room in a hospital of
third level of complexity. Materials and methods: the matrix of transition probabilities and the expected number of patients in every state during a period of 12 hours for all the patient cohorts was estimated by means of Markov chain analysis. The study was based upon the information derived from a follow-up study of 2.084 records of the patients who entered the emergency room due to a trauma condition. Results: an analysis of sensibility was obtained for the probability of remaining in the surgery area and of being transferred from the intensive care unit to the hospitalization area. Conclusion: the model presented here is appropriate for the reproduction of the phenomena observed. It can also be used to predict observable patterns if the admission rate of patient cohorts is know or if a theoretical model for them exists.
|Abstract
= 248 veces | PDF (ESPAÑOL (ESPAÑA))
= 19 veces|

Downloads

Download data is not yet available.

Author Biography

Reyla Moreno B

Profesor Facultad Nacional de Salud Pública

References

(1). Navarro V, Parker R. Models in health servicesplanning. Data handling in epidemiology Lon-don: Oxford University Press, 1970.

(2). Hendriks JC, Satten GA, Longini IM, van Dru-ten HA, Schellekens PT, Coutinho RA, vanGriensven GJ. Use of immunological markersand continuous-time Markov models to estima-te progression of HIV infection in homosexualmen. AIDS 1996;10(6):649-656. DOI: https://doi.org/10.1097/00002030-199606000-00011

(3). Schechter MT, Le N, Craib KJ, Le TN, O’Shaugh-nessy MV, Montaner JS. Use of the Markovmodel to estimate the waiting times in a modi-fied WHO staging system for HIV infection. JAcquir Immune Defic Syndr Hum Retrovirol1995 15;8(5):474. DOI: https://doi.org/10.1097/00042560-199504120-00007

(4). Lu Y, Stitt FW. Using Markov processes to des-cribe the prognosis of HIV-1 infection. MedDecis Making 1994 ;14(3):266-272. DOI: https://doi.org/10.1177/0272989X9401400309

(5). Kuo HS, Chang HJ, Chou P, Teng L, Chen TH.A Markov chain model to assess the efficacy ofscreening for non-insulin dependent diabetesmellitus (NIDDM). Int J Epidemiol 1999;28(2):233-240. DOI: https://doi.org/10.1093/ije/28.2.233

(6). Garg SK, Marshall G, Chase HP, Jackson WE,Archer P, Crews MJ. The use of the Markov pro-cess in describing the natural course of diabeticretinopathy. Arch Ophthalmol 1990;108 (9):1245-1247. DOI: https://doi.org/10.1001/archopht.1990.01070110061025

(7). Schaubel DE, Morrison HI, Desmeules M, Par-sons D, Fenton SS. End-stage renal disease projections for Canada to 2005 using Poisson andMarkov models. Int J Epidemiol 1998; 27: 274-281. DOI: https://doi.org/10.1093/ije/27.2.274

(8). Desmeules M, Schaubel D, Fenton SS, Mao Y.New and prevalent patients with end-stage re-nal disease in Canada. A portrait of the year2000. ASAIO J 1995;41(2):230-233. DOI: https://doi.org/10.1097/00002480-199541020-00021

(9). Duffy SW, Chen HH, Tabar L, Day NE. Estima-tion of mean sojourn time in breast cancer scree-ning using a Markov chain model of both entryto and exit from the preclinical detectable pha-se. Stat Med 1995 30;14(14):1531-1543. DOI: https://doi.org/10.1002/sim.4780141404

(10). Duffy SW, Day NE, Tabar L, Chen HH, SmithTC. Markov models of breast tumor progression:some age-specific results. J Natl Cancer InstMonogr 1997; 22:93-97. DOI: https://doi.org/10.1093/jncimono/1997.22.93

(11). Boult C, Kane RL, Louis TA, Ibrahim JG. Fore-casting the number of future disabled elderlyusing Markovian and mathematical models. JClin Epidemiol 1991;44(9):973-980. DOI: https://doi.org/10.1016/0895-4356(91)90068-K

(12). Biritwum RB, Odoom SI. Application of Mar-kov process modelling to helth status switchingbehaviour of infants. Int J Epidemiol 1995; 24:177-182. DOI: https://doi.org/10.1093/ije/24.1.177

(13). Pérez A, Chan W, Dennis R. Predicción de lalongitud de estancia en pacientes admitidos aunidades de cuidado intensivo en Colombia,usando un modelo Markoviano discreto. En: XIIISimposio de Estadística. Universidad Nacionalde Colombia, Armenia, agosto de 2003.

(14). Valencia M, Morales M, Arroyave ML, Montoya WD, Colorado SM, González G. Factores deriesgo de infección intrahospitalaria en pacientes mayores de 12 años hospitalizados por cau-sa traumática en el Hospital Universitario SanVicente de Paúl, 1999. Trabajo de grado (maes-tría en epidemiología). Universidad de Antio-quia. Facultad Nacional de Salud Pública. Me-dellín, 1999.

(15). Ibáñez J. (Ed). Nuevos avances en la investiga-ción social: la investigación social de segundoorden. Suplementos Anthropos 1990; 22: 130-180.

(16). Ross D, McKeown P. Modelos cuantitativos paraadministración, México: Iberoamericana, 1986.

(17). Prawda J. Métodos y modelos de investigaciónde operaciones. Vol 2. Modelos estocásticos.México, DF: Limusa; 1993.

(18). Caswell Hal. Matrix population models: cons-truction, analysis and interpretation. 2nd ed.Sunderland, Mass: Sinauer Assoc; 2001.

Published

2009-02-13

How to Cite

1.
Moreno B R, Barreto A R, Mora M D, Morales Z M, Rivas P F. Markovian analysisof a stay process in ahospital of third level ofcomplexity. Rev. Fac. Nac. Salud Pública [Internet]. 2009 Feb. 13 [cited 2025 Jan. 22];22(1). Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/709

Issue

Section

Research

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.