Sistema endocannabinoide y el rol del cannabis medicinal en el tratamiento de la espasticidad: una revisión narrativa

Autores/as

DOI:

https://doi.org/10.17533/udea.iatreia.207

Palabras clave:

Cannabidiol, cannabis, Dronabinol, Endocannabinoides, Espasticidad Muscular

Resumen

Hasta la fecha se han identificado más de 500 fitocannabinnoides derivados de la planta de Cannabis sativa, entre los cuales los más importantes son el Δ9-tetra-hidrocannabinol (THC) y el cannabidiol (CBD). Ambas moléculas interactúan con el sistema endocannabinoide y generan un efecto terapéutico en diferentes desórdenes neurológicos, dentro de los cuales se incluye la espasticidad. El mecanismo de acción postulado considera que el THC modula la hiperexcitabilidad de la neurona motora inferior, lo que provoca una disminución en el tono muscular, mientras que el CBD genera un efecto antiinflamatorio que contribuye a reducir el dolor. El uso terapéutico de estas moléculas en sujetos con espasticidad refractaria causada por diferentes etiologías ha permitido la mejoría de síntomas como los calambres, el dolor y el insomnio, lo que a su vez ha llevado a disminuir la dosis de fármacos antiespásticos y analgésicos. Esta revisión narrativa pretende ilustrar brevemente a la comunidad hispanohablante la fisiología del sistema endocannabinoide, la farmacología de los cannabinoides y su forma de uso, y sintetiza la información más relevante de los estudios que sugieren que estas moléculas son una potencial terapia en espasticidad refractaria.

|Resumen
= 633 veces | PDF
= 400 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cristian Eduardo Navarro, Universidad Nacional de Colombia, Bogotá, Colombia

Unidad de Neurología Clínica, Facultad de Medicina, Universidad Nacional de Colombia. Programa de Cannabis Medicinal, Clínica Zerenia. Bogotá, Colombia

Citas

(1) Navarrete C, García-Martín A, Rolland A, DeMesa J, Muñoz E. Cannabidiol and other cannabinoids in demyelinating diseases. Int J Mol Sci [Internet]. 2021;22(6):2992. https://doi.org/10.3390/ijms22062992

(2) Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol [Internet]. 2020;16(1):9–29. https://doi.org/10.1038/s41582-019-0284-z

(3) Lance JW. What is spasticity? Lancet [Internet]. 1990;335(8689):606. https://doi.org/10.1016/0140-6736(90)90389-m

(4) Sáinz-Pelayo MP, Albu S, Murillo N, Benito-Penalva J. Espasticidad en la patología neurológica. Actualización sobre mecanismos fisiopatológicos, avances en el diagnóstico y tratamiento. Rev Neurol [Internet]. 2020;70(12):453-460. https://doi.org/10.33588/rn.7012.2019474

(5) Nair KPS, Marsden J. The management of spasticity in adults. BMJ [Internet]. 2014;349:g4737. https://doi.org/10.1136/bmj.g4737

(6) Vural M, Yalcinkaya EY, Celik EC, Gunduz B, Bozan A, Erhan B. Assessment of quality of life in relation to spasticity severity and socio-demographic and clinical factors among patients with spinal cord injury. J Spinal Cord Med [Internet]. 2020;43(2):193–200. https://doi.org/10.1080/10790268.2018.1543093

(7) Riggins MS, Kankipati P, Oyster ML, Cooper RA, Boninger ML. The relationship between quality of life and change in mobility 1 year postinjury in individuals with spinal cord injury. Arch Phys Med Rehabil [Internet]. 2011;92(7):1027–33. https://doi.org/10.1016/j.apmr.2011.02.010

(8) Chang FH, Wang YH, Jang Y, Wang CW. Factors associated with quality of life among people with spinal cord injury: application of the International Classification of Functioning, Disability and Health model. Arch Phys Med Rehabil [Internet]. 2012;93(12):2264–70. https://doi.org/10.1016/j.apmr.2012.06.008

(9) Svensson J, Borg S, Nilsson P. Costs and quality of life in multiple sclerosis patients with spasticity. Acta Neurol Scand [Internet]. 2014;129(1):13–20. https://doi.org/10.1111/ane.12139

(10) Stevenson V, Gras A, Bárdos J, Broughton J. The high cost of spasticity in multiple sclerosis to individuals and society. Mult Scler J [Internet]. 2015;21(12):1583–92. https://doi.org/10.1177/1352458514566416

(11) Samitier-Pastor CB, Climent-Barbera JM, Cutillas-Ruiz R, Formigo-Couceiro J, Vázquez-Doce A. Guía clínica para el tratamiento de la espasticidad: consenso y algoritmos. Rehabilitación [Internet]. 2022;56(3):204–14. https://doi.org/10.1016/j.rh.2021.11.004

(12) Yadav V, Bever C, Bowen J, Bowling A, Weinstock-Guttman B, Cameron M, et al. Summary of evidence-based guideline: Complementary and alternative medicine in multiple sclerosis: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology [Internet]. 2014;82(12):1083–92. https://doi.org/10.1212/WNL.0000000000000250

(13) National Institute for Health and Care Excellence (NICE). Cannabis-based medicinal products. London, UK; 2019.

(14) National Institute for Health and Care Excellence (NICE). Spasticity in children and young people with non-progressive brain disorders. London, UK; 2014.

(15) The Royal College of Physicians. Spasticity in adults: management using botulinum toxin. London, UK; 2018.

(16) Simpson DM, Hallett M, Ashman EJ, Comella CL, Green MW, Gronseth GS, et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache. Neurology [Internet]. 2016;86(19):1818–26. https://doi.org/10.1212/WNL.0000000000002560

(17) Cáceres-Jerez LE, Villa-Acuña MM, Vera-Campos JA. Bomba intratecal de baclofeno, ¿una intervención terapéutica útil y segura en pacientes con espasticidad? Presentación de casos. Iatreia [Internet]. 2016;29(4):478–84. https://doi.org/10.17533/udea.iatreia.v29n4a09

(18) Kheder A, Nair KPS. Spasticity: pathophysiology, evaluation and management. Pract Neurol. 2012;12(5):289–98. https://doi.org/10.1136/practneurol-2011-000155

(19) Mátyás F, Urbán GM, Watanabe M, Mackie K, Zimmer A, Freund TF, et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology [Internet]. 2008;54(1):95–107. https://doi.org/10.1016/j.neuropharm.2007.05.028

(20) Bisogno T, Di Marzo V. Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders. CNS Neurol Disord - Drug Targets. 2010;9(5):564–73. https://doi.org/10.2174/187152710793361568

(21) Śmiarowska M, Białecka M, Machoy-Mokrzyńska A. Cannabis and cannabinoids: pharmacology and therapeutic potential. Neurol Neurochir Pol [Internet]. 2022;56(1):4–13. https://doi.org/10.5603/PJNNS.a2022.0015

(22) Prenderville JA, Kelly ÁM, Downer EJ. The role of cannabinoids in adult neurogenesis. Br J Pharmacol [Internet]. 2015;172(16):3950–63. https://doi.org/10.1111/bph.13186

(23) Lunn CA, Reich EP, Bober L. Targeting the CB2 receptor for immune modulation. Expert Opin Ther Targets. 2006;10(5):653–63. https://doi.org/10.1517/14728222.10.5.653

(24) Casadiego-Mesa AF, Lastra-Bello SM. Cannabis sintético: aspectos toxicológicos, usos clínicos y droga de diseño. Rev Fac Med [Internet]. 2015;63(3):501–10. https://doi.org/10.15446/revfacmed.v63n3.47460

(25) Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst Rev [Internet]. 2018;(3):CD012182. https://doi.org/10.1002/14651858.CD012182.pub2

(26) Brafford MM, Glode A. Dronabinol for chemotherapy-induced nausea and vomiting unresponsive to antiemetics. Cancer Manag Res [Internet]. 2016;8:49–55. https://doi.org/10.2147/CMAR.S81425

(27) Robinson JD, Cinciripini PM, Karam-Hage M, Aubin HJ, Dale LC, Niaura R, et al. Pooled analysis of three randomized, double-blind, placebo controlled trials with rimonabant for smoking cessation. Addict Biol [Internet]. 2018;23(1):291–303. https://doi.org/10.1111/adb.12508

(28) Plancarte-Sánchez R, Mansilla-Olivares A, De los Reyes-Pacheco VA, Meneses-González F. Therapeutic applications based on cannabinoids action. Gac México [Internet]. 2019;155(3):1–12. https://doi.org/10.24875/GMM.18004928

(29) White CM. A review of human studies assessing cannabidiol’s (CBD) therapeutic actions and potential. J Clin Pharmacol [Internet]. 2019;59(7):923–34. https://doi.org/10.1002/jcph.1387

(30) Karst M, Wippermann S, Ahrens J. Role of cannabinoids in the treatment of pain and (painful) spasticity. Drugs [Internet]. 2010;70(18):2409–38. https://doi.org/10.2165/11585260-000000000-00000

(31) Ingram G, Pearson OR. Cannabis and multiple sclerosis. Pract Neurol [Internet]. 2019;19(4):310–5. https://doi.org/10.1136/practneurol-2018-002137

(32) Fiani B, Sarhadi KJ, Soula M, Zafar A, Quadri SA. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci [Internet]. 2020;41(11):3085–98. https://doi.org/10.1007/s10072-020-04514-2

(33) Malaca S, Gottardi M, Pigliasco F, Barco S, Cafaro A, Amadori E, et al. UHPLC-MS/MS Analysis of cannabidiol and its metabolites in serum of patients with resistant epilepsy treated with CBD formulations. Pharmaceuticals [Internet]. 2021;14(7):630. https://doi.org/10.3390/ph14070630

(34) Arias S, Leon M, Jaimes D, Bustos RH. Clinical evidence of magistral preparations based on medicinal cannabis. Pharmaceuticals [Internet]. 2021;14(2):78. https://doi.org/10.3390/ph14020078

(35) Yoshid a T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M. The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci [Internet]. 2002;22(5):1690–7. https://doi.org/10.1523/JNEUROSCI.22-05-01690.2002

(36) Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J [Internet]. 2001;15(2):300–2. https://doi.org/10.1096/fj.00-0399fje

(37) Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature [Internet]. 2000;404(6773):84–7. https://doi.org/10.1038/35003583

(38) Wilkinson JD, Whalley BJ, Baker D, Pryce G, Constanti A, Gibbons S, et al. Medicinal cannabis: is Δ9–tetrahydrocannabinol necessary for all its effects? J Pharm Pharmacol [Internet]. 2010;55(12):1687–94. https://doi.org/10.1211/0022357022304

(39) Baker D, Pryce G, Jackson SJ, Bolton C, Giovannoni G. The biology that underpins the therapeutic potential of cannabis-based medicines for the control of spasticity in multiple sclerosis. Mult Scler Relat Disord [Internet]. 2012;1(2):64–75. https://doi.org/10.1016/j.msard.2011.11.001

(40) Hohmann AG, Suplita RL. Endocannabinoid mechanisms of pain modulation. AAPS J [Internet]. 2006;8(4):E693–708. https://doi.org/10.1208/aapsj080479

(41) Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci [Internet]. 2007;10(7):870–9. https://doi.org/10.1038/nn1916

(42) Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience [Internet]. 2005;135(1):235–45. https://doi.org/10.1016/j.neuroscience.2005.06.009

(43) Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature [Internet]. 2005;435(7045):1108–12. https://doi.org/10.1038/nature03658

(44) Navarro CE. Cannabis-based magistral formulation is highly effective as an adjuvant treatment in drug-resistant focal epilepsy in adult patients: an open-label prospective cohort study. Neurol Sci [Internet]. 2022. https://doi.org/10.1007/s10072-022-06393-1

(45) Squintani G, Donato F, Turri M, Deotto L, Teatini F, Moretto G, et al. Cortical and spinal excitability in patients with multiple sclerosis and spasticity after oromucosal cannabinoid spray. J Neurol Sci [Internet]. 2016;370:263–8. https://doi.org/10.1016/j.jns.2016.09.054

(46) MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med [Internet]. 2018;49:12–9. https://doi.org/10.1016/j.ejim.2018.01.004

(47) Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol [Internet]. 2016;15(3):270–8. https://doi.org/10.1016/S1474-4422(15)00379-8

(48) Leussink VI, Husseini L, Warnke C, Broussalis E, Hartung HP, Kieseier BC. Symptomatic therapy in multiple sclerosis: the role of cannabinoids in treating spasticity. Ther Adv Neurol Disord [Internet]. 2012;5(5):255–66. https://doi.org/10.1177/1756285612453972

(49) Davis E, Lee T, Weber JT, Bugden S. Cannabis use in pregnancy and breastfeeding: The pharmacist’s role. Can Pharm J [Internet]. 2020;153(2):95–100. https://doi.org/10.1177/1715163519893395

(50) Rice J, Cameron M. Cannabinoids for treatment of MS symptoms: State of the evidence. Curr Neurol Neurosci Rep [Internet]. 2017;18(8):1–10. https://doi.org/10.1007/s11910-018-0859-x

(51) Brown J, Winterstein A. Potential adverse drug events and drug–drug interactions with medical and consumer cannabidiol (CBD) use. J Clin Med [Internet]. 2019;8(7):989. https://doi.org/10.3390/jcm8070989

(52) Keating GM. Delta-9-Tetrahydrocannabinol/Cannabidiol oromucosal spray (Sativex®): A review in multiple sclerosis-related spasticity. Drugs [Internet]. 2017;77(5):563–74. https://doi.org/10.1007/s40265-017-0720-6

(53) Zajicek J, Fox P, Sanders H, Wright D, Vickery J, Nunn A, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS): multicentre randomised placebo-controlled trial. Lancet [Internet]. 2003;362(9395):1517–26. https://doi.org/10.1016/S0140-6736(03)14738-1

(54) Zajicek JP, Sanders HP, Wright DE, Vickery PJ, Ingram WM, Reilly SM, et al. Cannabinoids in multiple sclerosis (CAMS) study: Safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry [Internet]. 2005;76(12):1664–9. https://doi.org/10.1136/jnnp.2005.070136

(55) Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler J [Internet]. 2004;10(4):434–41. https://doi.org/10.1191/1352458504ms1082oa

(56) Collin C, Davies P, Mutiboko IK, Ratcliffe S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur J Neurol [Internet]. 2007;14(3):290–6. https://doi.org/10.1111/j.1468-1331.2006.01639.x

(57) Collin C, Ehler E, Waberzinek G, Alsindi Z, Davies P, Powell K, et al. A double-blind, randomized, placebo-controlled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol Res [Internet]. 2010;32(5):451–9. https://doi.org/10.1179/016164109X12590518685660

(58) Zajicek JP, Hobart JC, Slade A, Barnes D, Mattison PG. MUltiple Sclerosis and Extract of Cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry [Internet]. 2012;83(11):1125–32. https://doi.org/10.1136/jnnp-2012-302468

(59) Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol [Internet]. 2011;18(9):1122–31. https://doi.org/10.1111/j.1468-1331.2010.03328.x

(60) Markovà J, Essner U, Akmaz B, Marinelli M, Trompke C, Lentschat A, et al. Sativex® as Add-on therapy Vs further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial. Int J Neurosci [Internet]. 2019;129(2):119–28. https://doi.org/10.1080/00207454.2018.1481066

(61) Meuth SG, Henze T, Essner U, Trompke C, Vila-Silván C. Tetrahydrocannabinol and cannabidiol oromucosal spray in resistant multiple sclerosis spasticity: consistency of response across subgroups from the SAVANT randomized clinical trial. Int J Neurosci [Internet]. 2020;130(12):1199–205. https://doi.org/10.1080/00207454.2020.1730832

(62) Flachenecker P, Henze T, Zettl UK. Nabiximols (THC/CBD oromucosal spray, Sativex®) in clinical practice - results of a multicenter, non-interventional study (MOVE 2) in patients with multiple sclerosis spasticity. Eur Neurol [Internet]. 2014;71(5–6):271–9. https://doi.org/10.1159/000357427

(63) Flachenecker P, Henze T, Zettl UK. Long-term effectiveness and safety of nabiximols (Tetrahydrocannabinol/Cannabidiol oromucosal spray) in clinical practice. Eur Neurol [Internet]. 2014;72(1–2):95–102. https://doi.org/10.1159/000360285

(64) Patti F, Messina S, Solaro C, Amato MP, Bergamaschi R, Bonavita S, et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. J Neurol Neurosurg Psychiatry [Internet]. 2016;87(9):944–51. https://doi.org/10.1136/jnnp-2015-312591

(65) Slof J, Ruiz L, Vila C. Cost-effectiveness of Sativex in multiple sclerosis spasticity: New data and application to Italy. Expert Rev Pharmacoeconomics Outcomes Res [Internet]. 2015;15(3):379–91. https://doi.org/10.1586/14737167.2015.1025759

(66) Gras A, Broughton J. A cost-effectiveness model for the use of a cannabis-derived oromucosal spray for the treatment of spasticity in multiple sclerosis. Expert Rev Pharmacoeconomics Outcomes Res [Internet]. 2016;16(6):771–9. https://doi.org/10.1586/14737167.2016.1140574

(67) Mantovani LG, Cozzolino P, Cortesi PA, Patti F. Cost-effectiveness analysis of cannabinoid oromucosal spray use for the management of spasticity in subjects with multiple sclerosis. Clin Drug Investig [Internet]. 2020;40(4):319–26. https://doi.org/10.1007/s40261-020-00895-6

(68) Herzog S, Shanahan M, Grimison P, Tran A, Wong N, Lintzeris N, et al. Systematic review of the costs and benefits of prescribed cannabis-based medicines for the management of chronic illness: Lessons from multiple sclerosis. Pharmacoeconomics [Internet]. 2018;36(1):67–78. https://doi.org/10.1007/s40273-017-0565-6

(69) Erku D, Shrestha S, Scuffham P. Cost-effectiveness of medicinal cannabis for management of refractory symptoms associated with chronic conditions: A systematic review of economic evaluations. Value Heal [Internet]. 2021;24(10):1520–30. https://doi.org/10.1016/j.jval.2021.04.1276

(70) Filippini G, Minozzi S, Borrelli F, Cinquini M, Dwan K. Cannabis and cannabinoids for symptomatic treatment for people with multiple sclerosis. Cochrane Database Syst Rev [Internet]. 2022;(5):1–104. https://doi.org/10.1002/14651858.CD013444.pub2

(71) Riva N, Mora G, Sorarù G, Lunetta C, Ferraro OE, Falzone YM, et al. Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol [Internet]. 2019;18(2):155–64. https://doi.org/10.1016/S1474-4422(18)30406-X

(72) Pooyania S, Ethans K, Szturm T, Casey A, Perry D. A randomized, double-blinded, crossover pilot study assessing the effect of nabilone on spasticity in persons with spinal cord injury. Arch Phys Med Rehabil [Internet]. 2010;91(5):703–7. https://doi.org/10.1016/j.apmr.2009.12.025

(73) Andresen S, Biering-Sørensen F, Hagen E, Nielsen J, Bach F, Finnerup N. Cannabis use in persons with traumatic spinal cord injury in Denmark. J Rehabil Med [Internet]. 2017;49(2):152–60. https://doi.org/10.2340/16501977-2105

(74) Stillman M, Capron M, Mallow M, Ransom T, Gustafson K, Bell A, et al. Utilization of medicinal cannabis for pain by individuals with spinal cord injury. Spinal Cord Ser Cases [Internet]. 2019;5(1):66. https://doi.org/10.1038/s41394-019-0208-6

(75) Nabata KJ, Tse EK, Nightingale TE, Lee AHX, Eng JJ, Querée M, et al. The therapeutic potential and usage patterns of cannabinoids in people with spinal cord injuries: A systematic review. Curr Neuropharmacol [Internet]. 2021;19(3):402–32. https://doi.org/10.2174/1570159X18666200420085712

(76) Thomas PA, Carter GT, Bombardier CH. A scoping review on the effect of cannabis on pain intensity in people with spinal cord injury. J Spinal Cord Med [Internet]. 2021;1–12. https://doi.org/10.1080/10790268.2020.1865709

(77) Lorenz R. On the application of cannabis in paediatrics and epileptology. Neuro Endocrinol Lett [Internet]. 2004;25(1–2):40–4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15159680/#:~:text=THC%20effected%20reduced%20spasticity%2C%20improved,kg%20body%20weight%20a%20day.

(78) Wong S, Wilens T. Medical cannabinoids in children and adolescents: A systematic review. Pediatrics [Internet]. 2017;140(5):e20171818. https://doi.org/10.1542/peds.2017-1818

(79) Fairhurst C, Kumar R, Checketts D, Tayo B, Turner S. Efficacy and safety of nabiximols cannabinoid medicine for paediatric spasticity in cerebral palsy or traumatic brain injury: a randomized controlled trial. Dev Med Child Neurol [Internet]. 2020;62(9):1031–9. https://doi.org/10.1111/dmcn.14548

(80) Marinelli L, Puce L, Mori L, Leandri M, Rosa GM, Currà A, et al. Cannabinoid effect and safety in spasticity following stroke: A double-blind randomized placebo-controlled study. Front Neurol [Internet]. 2022;13:892165. https://doi.org/10.3389/fneur.2022.892165

Descargas

Publicado

15-12-2022

Cómo citar

1.
Navarro CE. Sistema endocannabinoide y el rol del cannabis medicinal en el tratamiento de la espasticidad: una revisión narrativa. Iatreia [Internet]. 15 de diciembre de 2022 [citado 13 de abril de 2024];37(1). Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/350209

Número

Sección

Artículos de revisión