Comparison of three bioimpedance techniques with hydrodensitometry for assessment of body composition in young adult women
DOI:
https://doi.org/10.17533/udea.iatreia.v30n3a01Keywords:
bioelectrical impedance, body composition, eight electrodes bioimpedance, fat mass, fat mass percentage, hydrodensitometryAbstract
Background: Bioimpedance measurement allows quick and safe estimation of the body composition. However, it remains controversial which bioimpedan- ce measurement technique is more exact for calcula- ting the fat mass percentage (%FM).
Objective: To compare the %FM obtained with three bioimpedance techniques with hydrodensitometry, as a reference method.
Materials and methods: In 31 women, the %FM was assessed by hydrodensitometry with simultaneous lung residual volume measurement and three bioimpedance techniques: hands-to-feet (8-electrodes), hand-to-foot (4-electrodes) and foot- to-foot (4-electrodes).
Results: Average age and body mass index were 22.4 ± 2.8 years and 23.6 ± 3.3 kg/m2, respectively. There were no significant differences (p > 0.05) between the %FM obtained by hydrodensitometry (31.4 ± 6.6) and hands-to-feet technique (31.9 ± 5.9). However, hand-to-foot and foot-to-foot techniques showed differences (p < 0.05) with the reference method of +1.4 % and -4.9%, respectively. There was a fair agreement between hydrodensitometry and the results obtained with hands-to-feet (Bland-Altman: IC95 %: -6.6; 5.6) and hand-to-foot (Bland-Altman: IC95 %: -8.0; 5.2) techniques. The foot-to-foot measurement showed poor agreement with the reference method (Bland-Altman: IC95 %: -4.7; 14.4).
Conclusions: In this group of young women with healthy body weight, the hands-to-feet bioimpedance technique generates body composition values closer to the hydrodensitometry results as compared with the hand-to-foot and foot-to-foot techniques. Additionally, the hands-to-feet technique shows a slightly better agreement with hydrodensitometry than the hand-to-foot and foot-to-foot techniques.
Downloads
References
(1.) Lazzer S, Boirie Y, Meyer M, Vermorel M. Evaluation of two foot-to-foot bioelectrical impedance analysers to assess body composition in overweight and obese adolescents. Br J Nutr. 2003 Nov;90(5):987-92.
(2.) Aglago KE, Menchawy IE, Kari KE, Hamdouchi AE, Barkat A, Bengueddour R, et al. Development and validation of bioelectrical impedance analysis equations for predicting total body water and fat-free mass in North-African adults. Eur J Clin Nutr. 2013 Oct;67(10):1081-6. DOI 10.1038/ejcn.2013.125.
(3.) Thomson R, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin Nutr. 2007 Dec;26(6):771-7.
(4.) Wan CS, Ward LC, Halim J, Gow ML, Ho M, Briody JN, et al. Bioelectrical impedance analysis to estimate body composition, and change in adiposity, in overweight and obese adolescents: comparison with dual-energy x-ray absorptiometry. BMC Pediatr. 2014;14:249. DOI 10.1186/1471-2431-14-249.
(5.) Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015 Apr;30(2):180-93. DOI 10.1177/0884533614568155.
(6.) Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity (Silver Spring). 2006 Nov;14(11):2064-70.
(7.) Pietrobelli A, Rubiano F, St-Onge MP, Heymsfield SB. New bio)impedance analysis system: improved phenotyping with whole-body analysis. Eur J Clin Nutr. 2004 Nov;58(11):1479-84.
(8.) Sato S, Demura S, Kitabayashi T, Noguchi T. Segmen- tal body composition assessment for obese Japanese adults by single-frequency bioelectrical impedance analysis with 8-point contact electrodes. J Physiol Anthropol. 2007 Sep;26(5):533-40.
(9.) Bosy-Westphal A, Schautz B, Later W, Kehayias JJ, Gallagher D, Müller MJ. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013 Jan;67 Suppl 1:S14- 21. DOI 10.1038/ejcn.2012.160.
(10.) Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr. 2013 Jan;67 Suppl 1:S2-9. DOI 10.1038/ejcn.2012.149.
(11.) Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004 Oct;23(5):1226-43.
(12.) Deurenberg P, Deurenberg-Yap M, Schouten FJ. Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups. Eur J Clin Nutr. 2002 Mar;56(3):214-20.
(13.) Bedogni G, Malavolti M, Severi S, Poli M, Mussi C, Fan- tuzzi AL, et al. Accuracy of an eight-point tactile-electrode impedance method in the assessment of total body water. Eur J Clin Nutr. 2002 Nov;56(11):1143-8.
(14.) Demura S, Sato S, Kitabayashi T. Percentage of total body fat as estimated by three automatic bioelectrical impedance analyzers. J Physiol Anthropol Appl Human Sci. 2004 May;23(3):93-9.
(15.) Ward LC. Segmental bioelectrical impedan- ce analysis: an update. Curr Opin Clin Nutr Metab Care. 2012 Sep;15(5):424-9. DOI 10.1097/ MCO.0b013e328356b944.
(16.) Lorenzo AD, Andreoli A. Segmental bioelectrical impedance analysis. Curr Opin Clin Nutr Metab Care. 2003 Sep;6(5):551-5.
(17.) Mally K, Dittmar M. Comparison of three segmental multifrequency bioelectrical impedance techniques in healthy adults. Ann Hum Biol. 2012 Nov- Dec;39(6):468-78. DOI 10.3109/03014460.2012.711858.
(18.) Organ LW, Bradham GB, Gore DT, Lozier SL. Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol. 1994 Jul;77(1):98-112.
(19.) Cornish BH, Jacobs A, Thomas BJ, Ward LC. Optimizing electrode sites for segmental bioimpedance measurements. Physiol Meas. 1999 Aug;20(3):241-50.
(20.) Aristizábal Rivera JC, Restrepo Calle MT. Validez de la bioimpedancia para estimar la composición corporal de mujeres entre los 18 y 40 años. Perspct Nutr Hum. 2014;16(1):52-60.
(21.) Caicedo-Eraso JC, González-Correa CA, González-Correa CH. Bioelectrical impedance analysis (BIA) equations validation against hydrodensitometry in a Colombian population. J Phys Conf Ser. 2013; 434(2013):012065. DOI 10.1088/1742-596/434/1/012065.
(22.) Xunta de Galicia: Consellería de Sanidade [Internet]. España: Xunta de Galicia; 2011 [consultada 2016 Jul]. Epidat: programa para análisis epidemiolóxico de datos. Versión 4.0. Abril 2011. Dispoñible en: http:// dxsp.sergas.es.
(23.) Aristizábal JC, Restrepo MT, Amalia L. Validación por hidrodensitometría de ecuaciones de pliegues cutáneos utilizadas para estimar la composición corporal en mujeres. Biomédica. 2008 Jul-Sep;28(3):404-13.
(24.) Harrison G, Buskirk E, Carter J, Johnston F, Lohman T, Pollock M, et al. Skinfold Thickness and Measure- ment Technique. In: Lohman T, Roche A, Martorell R. Antropometric Standardization reference manual. Human Kinetics Publishers; 1988. p. 55-80.
(25.) Going S. Hidrodensitometría y pletismografía de desplazamiento de aire. En: Heymsfield S, Lohman T, Wang Z, Going S. Composición Corporal. 2a ed. México: McGraw-Hill; 2007. p. 17-34.
(26.) Systems R. Appendix B: Testing your BIA instrument. CYPRUS Body Composition Analysis. 2012.
(27.) Kotler DP, Burastero S, Wang J, Pierson RN Jr. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr. 1996 Sep;64(3 Suppl):489S-497S.
(28.) Tanita. Understanding BIA Technology. Tanita Body Composition Analyzer Technical Notes. USA: 5.
(29.) Seca 515/514. Capítulo 5. Manejo. Instrucciones de uso para médicos y asistencias. pág. 23-36.
(30.) World Health Organization [Internet]. Ginebra: WHO; 2015 [cited 2016 July]. Obesity and Overweight. Available from: http://www.who.int/mediacentre/facts- heets/fs311/en/
(31.) Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb;1(8476):307-10.
(32.) Gonçalves VS, Faria ER, Franceschini Sdo C, Priore SE. Predictive capacity of different bioelectrical impedance analysis devices, with and without pro- tocol, in the evaluation of adolescents. J Pediatr (Rio J). 2013 Nov-Dec;89(6):567-74. DOI 10.1016/j. jped.2013.03.023.
(33.) Thomas BJ, Cornish BH, Pattemore MJ, Jacobs M, Ward LC. A comparison of the whole-body and segmental methodologies of bioimpedance analysis. Acta Diabetol. 2003 Oct;40 Suppl 1:S236-7.
(34.) Wotton MJ, Thomas BJ, Cornish BH, Ward LC. Com- parison of whole body and segmental bioimpedance methodologies for estimating total body water. Ann N Y Acad Sci. 2000 May;904:181-6.
(35.) Wang L, Hui SS. Validity of Four Commercial Bioelectrical Impedance Scales in Measuring Body Fat among Chinese Children and Adolescents. Biomed Res Int. 2015;2015:614858. DOI 10.1155/2015/614858.
(36.) Shafer KJ, Siders WA, Johnson LK, Lukaski HC. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition. 2009 Jan;25(1):25-32. DOI 10.1016/j.nut.2008.07.004.
(37.) Neovius M, Hemmingsson E, Freyschuss B, Uddén J. Bioelectrical impedance underestimates total and truncal fatness in abdominally obese women. Obesity (Silver Spring). 2006 Oct;14(10):1731-8.
(38.) Bracco D, Thiébaud D, Chioléro RL, Landry M, Burc- khardt P, Schutz Y. Segmental body composition as- sessed by bioelectrical impedance analysis and DEXA in humans. J Appl Physiol. 1996 Dec;81(6):2580-7.
(39.) Elia M. Body composition by whole-body bioelec- trical impedance and prediction of clinically rele- vant outcomes: overvalued or underused? Eur J Clin Nutr. 2013 Jan;67 Suppl 1:S60-70. DOI 10.1038/ ejcn.2012.166.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Iatreia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Papers published in the journal are available for use under the Creative Commons license, specifically Attribution-NonCommercial-ShareAlike 4.0 International.
The papers must be unpublished and sent exclusively to the Journal Iatreia; the author uploading the contribution is required to submit two fully completed formats: article submission and authorship responsibility.