Glucose promotes resistance in lymphocytes against oxidative stress-induced apoptosis through signaling and metabolic pathways. Implications for Parkinson’s disease
DOI:
https://doi.org/10.17533/udea.iatreia.v30n2a02Keywords:
apoptosis, glucose, lymphocytes, oxidative stress, rotenone, signalingAbstract
Introduction: Parkinson’s disease (PD) is a neurological disorder associated with the selective loss of dopaminergic (DAergic) neurons. Clinical data suggest that oxidative stress (OS) and dysregulation of glucose (G) metabolism are early events in PD. However, no data are available to explain the molecular connection between glucose metabolism, OS, and neuronal demise in PD. Human lymphocytes share a similar dopaminergic signaling mechanism with DAergic neurons. Further, rotenone (ROT) is a mitochondrial complex I inhibitor that selectively induces apoptosis through OS in dopaminergic neurons and lymphocytes. Thus, to test the hypothesis that G metabolism and OS are linked in dopaminergic system toxicity and PD, human lymphocytes were cultured with ROT in the presence or absence of various concentrations of glucose.
Objective: This study examines the response of human lymphocytes to glucose (11, 55, 166, 277, 555 mM G) in the absence or presence of ROT (250 microM).
Methods: Light and fluorescence microscopy and immunocytochemistry techniques were used to evaluate morphological and biochemical changes in human lymphocytes.
Results: 55 mM G was effective in suppressing ROT-induced apoptosis in lymphocytes via 5 pathways: (i) pentose phosphate pathway (PPP), (ii) glutathione (GSH) pathway, (iii) superoxide dismutase (SOD) and catalase (CAT) antioxidant systems, and (iv) Phosphoinositide 3-kinase (PI3-K) signaling. Additionally, we report for the first time that G rescued lymphocytes from ROT-induced apoptosis by (v) activating NF-kB and down-regulating p53 and caspase-3. Signaling (e.g., LY294002) and metabolic inhibitors of these pathways (e.g., dehydroepiandrosterone (DHEA), L-buthionine- sulfoximine (BSO), 1,3-Bis (2-chloroethyl)-1-nitrosourea (BCNU), mercaptosuccinic acid (MS), 3-amino-1,2,4- triazole (AT), sodium diethyldithiocarbamate (DDC)) only partially reversed the protective effect of 55 mM G on lymphocytes exposed to ROT.
Conclusion: These data suggest that high G simultaneously triggers cellular signaling and antioxidant systems to ensure global cell protection against stressful conditions in DAergic cells.
Downloads
References
(1.) Venderova K, Park DS. Programmed cell death in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Aug;2(8). pii: a009365. DOI 10.1101/cshperspect. a009365.
(2.) Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015 Jul;9:91. DOI 10.3389/fnana.2015.00091.
(3.) Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2014;54:141-64. DOI 10.1146/annurev-pharmtox-011613-135937.
(4.) Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012 Aug;42(7):613-32. DOI 10.3109/10408444.2012.680431.
(5.) Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015 Jan;46:101-16. DOI 10.1016/j.neuro.2014.12.002.
(6.) Xu Y, Wei X, Liu X, Liao J, Lin J, Zhu C, et al. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson’s Disease. Aging Dis. 2015 Nov;6(6):426-36. DOI 10.14336/AD.2015.0204.
(7.) Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging. 2014 May;35(5):1111-5. DOI 10.1016/j.neurobiolaging.2013.11.001.
(8.) Alberio T, Pippione AC, Zibetti M, Olgiati S, Cecconi D, Comi C, et al. Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson’s disease. Sci Rep. 2012;2:953. DOI 10.1038/srep00953.
(9.) Allen Reish HE, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Parkinsons Dis. 2015;5(1):1-19. DOI 10.3233/JPD-140491.
(10.) Jimenez del Rio M, Velez Pardo C. The hydrogen peroxide and its importance in the Alzheimer’s and Parkinson’s disease. Cent Nerv Syst Agents Med Chem. 2004 Dec;4(4):279-85.
(11.) Jimenez del Rio M, Velez Pardo C. The bad, the good, and the ugly about oxidative stress Oxid Med Cell Longev. 2012;2012:163913. DOI 10.1155/2012/163913.
(12.) Younes-Mhenni S, Frih-Ayed M, Kerkeni A, Bost M, Chazot G. Peripheral blood markers of oxidative stress in Parkinson’s disease. Eur Neurol. 2007;58(2):78-83.
(13.) Battisti C, Formichi P, Radi E, Federico A. Oxidativestress-induced apoptosis in PBLs of two patients with Parkinson disease secondary to alpha-synuclein mutation. J Neurol Sci. 2008 Apr;267(1-2):120-4.
(14.) Prigione A, Isaias IU, Galbussera A, Brighina L, Begni B, Andreoni S, et al. Increased oxidative stress in lymphocytes from untreated Parkinson’s disease patients. Parkinsonism Relat Disord. 2009 May;15(4):327-8. DOI 10.1016/j.parkreldis.2008.05.013.
(15.) Colamartino M, Santoro M, Duranti G, Sabatini S, Ceci R, Testa A, et al. Evaluation of levodopa and carbidopa antioxidant activity in normal human lymphocytes in vitro: implication for oxidative stress in Parkinson’s disease. Neurotox Res. 2015 Feb;27(2):106-17. DOI 10.1007/s12640-014-9495-7.
(16.) Ide K, Yamada H, Umegaki K, Mizuno K, Kawakami N, Hagiwara Y, et al. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition. 2015 Feb;31(2):406-8. DOI 10.1016/j.nut.2014.08.001.
(17.) Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M. Effects of insulin-like growth factor-1 on rotenoneinduced apoptosis in human lymphocyte cells. Basic Clin Pharmacol Toxicol. 2010 Jan;106(1):53-61. DOI 10.1111/j.1742-7843.2009.00472.x.
(18.) Schwartz AG, Whitcomb JM, Nyce JW, Lewbart ML, Pashko LL. Dehydroepiandrosterone and structural analogs: a new class of cancer chemopreventive agents. Adv Cancer Res. 1988;51:391-424.
(19.) Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem. 1998 Apr;273(17):10609-17.
(20.) Weydert CJ, Zhang Y, Sun W, Waugh TA, Teoh ML, Andringa KK, et al. Increased oxidative stress created by adenoviral MnSOD or CuZnSOD plus BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) inhibits breast cancer cell growth. Free Radic Biol Med. 2008 Mar;44(5):856-67.
(21.) Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH. The effects of buthionine sulfoximine, diethyldithiocarbamate or 3-amino-1,2,4-triazole on propyl gallate-treated HeLa cells in relation to cell growth, reactive oxygen species and glutathione. Int J Mol Med. 2009 Aug;24(2):261-8.
(22.) Leite M, Quinta-Costa M, Leite PS, Guimarães JE. Critical evaluation of techniques to detect and measure cell death--study in a model of UV radiation of the leukaemic cell line HL60. Anal Cell Pathol. 1999;19(3-4):139-51.
(23.) Tada-Oikawa S, Hiraku Y, Kawanishi M, Kawanishi S. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci. 2003 Nov;73(25):3277-88.
(24.) Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003 Mar;278(10):8516-25.
(25.) Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol. 2008 Oct;84(4):949-57. DOI 10.1189/jlb.0108024.
(26.) Jagtap JC, Chandele A, Chopde BA, Shastry P. Sodium pyruvate protects against H(2)O(2) mediated apoptosis in human neuroblastoma cell line-SK-NMC. J Chem Neuroanat. 2003 Oct;26(2):109-18.
(27.) Wang LZ, Sun WC, Zhu XZ. Ethyl pyruvate protects PC12 cells from dopamine-induced apoptosis. Eur J Pharmacol. 2005 Jan;508(1-3):57-68.
(28.) Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012 Aug;53(3):421-36. DOI 10.1016/j.freeradbiomed.2012.05.006.
(29.) Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol. 2007 Dec;6(4):10.
(30.) Kondoh H, Lleonart ME, Bernard D, Gil J. Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histol Histopathol. 2007 Jan;22(1):85-90.
(31.) Shi DY, Xie FZ, Zhai C, Stern JS, Liu Y, Liu SL. The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells. Mol Cancer. 2009 Jun 5;8:32. DOI 10.1186/1476-4598-8-32.
(32.) Grant CM, Quinn KA, Dawes IW. Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol. 1999 Apr;19(4):2650-6.
(33.) Shi F, Li Y, Li Y, Wang X. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai). 2009 May;41(5):352-61.
(34.) Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 2010 May;396(1):120-4. DOI 10.1016/j.bbrc.2010.03.083.
(35.) Watabe M, Nakaki T. ATP depletion does not account for apoptosis induced by inhibition of mitochondrial electron transport chain in human dopaminergic cells. Neuropharmacology. 2007 Feb;52(2):536-41.
(36.) Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 2002 Nov;16(13):1738-48.
(37.) Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012 Nov;22(11):557-66. DOI 10.1016/j.tcb.2012.08.001.
(38.) Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014 Feb;2:535-62. DOI 10.1016/j.redox.2014.02.006.
(39.) Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem. 2003 Jun;278(26):24233-41.
(40.) Yang WS, Seo JW, Han NJ, Choi J, Lee KU, Ahn H, et al. High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am J Physiol Renal Physiol. 2008 May;294(5):F1065-75. DOI 10.1152/ajprenal.00381.2007.
(41.) Kamata H, Manabe T, Oka Si, Kamata K, Hirata H. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett. 2002 May;519(1-3):231-7.
(42.) Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63. DOi 10.1038/nrm3722.
(43.) Ray S, Watkins DN, Misso NL, Thompson PJ. Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy. 2002 Apr;32(4):571-7.
(44.) Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002 Jun;277(24):21843-50.
(45.) Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D, et al. Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem. 2004 Aug;279(34):35510-7.
(46.) Xing CG, Zhu BS, Liu HH, Lin F, Yao HH, Liang ZQ, et al. LY294002 induces p53-dependent apoptosis of SGC7901 gastric cancer cells. Acta Pharmacol Sin. 2008 Apr;29(4):489-98. DOI 10.1111/j.1745-7254.2008.00770.x.
(47.) Yoon SY, Oh YJ. Glucose Levels in Culture Medium Determine Cell Death Mode in MPP(+)-treated Dopaminergic Neuronal Cells. Exp Neurobiol. 2015 Sep;24(3):197-205. DOI 10.5607/en.2015.24.3.197.
(48.) Spector R. Nutrient transport systems in brain: 40 years of progress. J Neurochem. 2009 Oct;111(2):315-20. DOI 10.1111/j.1471-4159.2009.06326.x.
(49.) Piatkiewicz P, Czech A, Tatoń J. Glucose transport in human peripheral blood lymphocytes influenced by type 2 diabetes mellitus. Arch Immunol Ther Exp (Warsz). 2007 Mar-Apr;55(2):119-26.
(50.) Kerr JFR, Gobe GC, Winterford CM, Harmon BV. Anatomical methods in cell death. In: Methods in Cell Biology. Vol. 46. San Diego: Academic Press; 1995. p. 1-39.
(51.) Gebril HM, Avula B, Wang YH, Khan IA, Jekabsons MB. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Neurochem Int. 2016 Feb;93:26-39. DOI 10.1016/j.neuint.2015.12.008.
(52.) Pineda-Trujillo N, Carvajal-Carmona LG, Buriticá O, Moreno S, Uribe C, Pineda D, et al. A novel Cys212Tyr founder mutation in parkin and allelic heterogeneity of juvenile Parkinsonism in a population from North West Colombia. Neurosci Lett. 2001 Feb;298(2):87-90.
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Iatreia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Papers published in the journal are available for use under the Creative Commons license, specifically Attribution-NonCommercial-ShareAlike 4.0 International.
The papers must be unpublished and sent exclusively to the Journal Iatreia; the author uploading the contribution is required to submit two fully completed formats: article submission and authorship responsibility.