In vitro antiviral effect of silver nanoparticles against SARS-CoV-2

Autores/as

DOI:

https://doi.org/10.17533/udea.iatreia.188

Palabras clave:

Antiviral Agents, Coronavirus Infection, Metal Nanoparticles, Infección por SARS-CoV-2

Resumen

Introduction: COVID-19 is an acute respiratory tract disease caused by the emerging coronavirus SARS-CoV-2. Although several options for chemoprophylaxis are under development, effective treatment for COVID-19 is not yet available.

Objective: To investigate the antiviral properties of synthesized silver nanoparticles (AgNPs) against SARS-CoV-2 using in vitro models.

Materials and methods: This work synthesized AgNPs using an electrochemical method and characterized them using physico-chemical techniques (ICP-OES, ultraviolet-visible spectroscopy, and transmission electron microscopy). AgNPs with diameter sizes ranging between 2.6 to 30 nm and an average size of 6.2 nm were obtained by the electrochemical method. The cytotoxic effect and the antiviral activity of prepared AgNPs against SARS-CoV-2 were evaluated in vitro using Vero E6 cells. Cell viability was evaluated by MTT assay in the presence of serial dilutions of AgNPs. The antiviral effect of AgNPs was evaluated before and after the infection of Vero E6 cells by plaque assay.

Results: Cytotoxic effect was observed at concentrations above 0.07 ppm. AgNPs exhibit a significant reduction of SARS-CoV-2 viral titer after a pre-post treatment strategy with inhibition of 96.5%, 64.13%, and 74.72% at 0.03, 0.017, and 0.008 ppm, respectively.

Conclusion: Our results suggest that AgNPs could reduce SARS-CoV-2 replication with a low cytotoxic effect. Still, additional in vitro and in vivo studies are required to define its potential therapeutic application in humans.

|Resumen
= 745 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 104 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Lizdany Flórez-Álvarez, Universidad de Antioquia, Medellín, Colombia

Research assistant. Immunovirology Laboratory. Universidad de Antioquia. Medellín, Colombia.

Juan C. Hernández, Universidad Cooperativa de Colombia. Medellín, Colombia

Associate Professor. Universidad Cooperativa de Colombia. Medellín, Colombia.

Wildeman Zapata, Universidad Cooperativa de Colombia. Medellín, Colombia

Professor-Researcher. Universidad Cooperativa de Colombia. Medellín, Colombia.

José Iván Charry- Zuluaga, VITTRO SAS. Medellín, Colombia.

Legal representative. VITTRO SAS, VITTRO SAS. Medellín, Colombia.

José R. Jaramillo, Clínica Noel. Medellín, Colombia

Anesthesiologist doctor, pediatric anesthesiologist. Clínica Noel. Medellín, Colombia.

Natalia A. Taborda, Corporación Universitaria Remington. Medellín, Colombia.

Professor-Researcher. Corporación Universitaria Remington. Medellín, Colombia.

Juan D. González, Corporación Universitaria Remington. Medellín, Colombia

Professor-Researcher. Corporación Universitaria Remington. Medellín, Colombia.

Larry L. Martínez, ESE Hospital La María. Medellín, Colombia

Infectologist. Director Equipo Latinoamericano de Investigación en Infectología y Salud Pública -ELISAP-, ESE Hospital La María. Medellín, Colombia.

Lina M. Yassin, Corporación Universitaria Remington. Medellín, Colombia

Vice-Rector for Research. Professor-Researcher. Corporación Universitaria Remington. Medellín, Colombia.

Citas

(1) Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA [Internet]. 2020;323(14):1406–7. DOI 10.1001/jama.2020.2565.

(2) Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA [Internet]. 2020;324(8):782–93. DOI 10.1001/jama.2020.12839.

(3) World Health Organization. WHO Coronavirus (COVID-19) Dashboard [Internet] [Consultado 2021 Aug 5]. Disponible en: https://covid19.who.int/

(4) Kim JS, Lee JY, Yang JW, Lee KH, Effenberger M, Szpirt W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics [Internet]. 2021;11(1):316–29. DOI 10.7150/thno.49713.

(5) Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol [Internet]. 2020;108(1):17–41. DOI 10.1002/JLB.3COVR0520-272R.

(6) Lawton G. Are booster shots coming? New Sci [Internet]. 2021;250(3334):8–9. DOI 10.1016/S0262-4079(21)00808-3.

(7) Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature [Internet]. 2021;596(7871):276–80. DOI 10.1038/s41586-021-03777-9.

(8) Yu X, Wei D, Xu W, Li Y, Li X, Zhang X, et al. Reduced sensitivity of SARS-CoV-2 Omicron variant to antibody neutralization elicited by booster vaccination. Cell Discov [Internet]. 2022;8(1):4. DOI 10.1038/s41421-022-00375-5.

(9) Lopera TJ, Chvatal-Medina M, Flórez-Álvarez L, Zapata-Cardona MI, Taborda NA, Rugeles MT, et al. Humoral Response to BNT162b2 Vaccine Against SARS-CoV-2 Variants Decays After Six Months. Front Immunol [Internet]. 2022;13:879036. DOI 10.3389/fimmu.2022.879036.

(10) Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, Flórez-Álvarez L, Yepes LM, Rugeles MT, et al. Curcumin Inhibits In Vitro SARS-CoV-2 Infection In Vero E6 Cells through Multiple Antiviral Mechanisms. Molecules [Internet]. 2021;26(22):6900. DOI 10.3390/molecules26226900.

(11) Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med [Internet]. 2020 Jul 23;383(21):2041–52. DOI 10.1056/NEJMoa2019014.

(12) Lysenko V, Lozovski V, Lokshyn M, Gomeniuk YV, Dorovskih A, Rusinchuk N, et al. Nanoparticles as antiviral agents against adenoviruses. Adv Nat Sci Nanosci Nanotechnol [Internet]. 2018;9(2):25021. DOI 10.1088/2043-6254/aac42a.

(13) Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology [Internet]. 2005;3(1):6. DOI 10.1186/1477-3155-3-6.

(14) Lara HH, Ayala-Nuñez N V, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology [Internet]. 2010;8(1):1. DOI 10.1186/1477-3155-8-1.

(15) Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther [Internet]. 2008;13(2):252–62. DOI 10.1177/135965350801300210.

(16) Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology [Internet]. 2011;9(1):30. DOI 10.1186/1477-3155-9-30.

(17) Mehrbod P, Motamed N, Tabatabaian M, Estyar R, Amini E, Shahidi M, et al. In Vitro Antiviral Effect of “Nanosilver” on Influenza Virus. DARU J Pharm Sci. 2009; 1,17(2):88-93.

(18) Almanza-Reyes H, Moreno S, Plascencia-López I, Alvarado-Vera M, Patrón-Romero L, Borrego B, et al. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS One [Internet]. 16(8): e0256401. DOI 10.1371/journal.pone.0256401.

(19) Díaz FJ, Aguilar-Jiménez W, Flórez-Álvarez L, Valencia G, Laiton-Donato K, Franco-Muñoz C, et al. Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia. Biomèdica [Internet]. 2020;40(2):148-5. DOI 10.7705/biomedica.5834.

(20) Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods [Internet]. 2012;9(7):671–5. DOI 10.1038/nmeth.2089.

(21) Yepes-Perez AF, Herrera-Calderón O, Oliveros CA, Flórez-Álvarez L, Zapata-Cardona MI, Yepes L, et al. The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evid Based Complement Alternat Med [Internet]. 2021;2021:6679761. DOI 10.1155/2021/667976.

(22) Liu J, Yu S, Yin Y, Chao JB. Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC Trends Anal Chem [Internet]. 2012;33:95–106. DOI 10.1016/j.trac.2011.10.010.

(23) Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci [Internet]. 2020;284:102246. DOI 10.1016/j.cis.2020.102246.

(24) Bandyopadhyay S, Peralta-Videa JR, Hernandez-Viezcas JA, Montes MO, Keller AA, Gardea-Torresdey JL. Microscopic and spectroscopic methods applied to the measurements of nanoparticles in the environment. Appl Spectrosc Rev [Internet]. 2012;47(3):180–206. DOI 10.1080/05704928.2011.637186.

(25) Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess [Internet]. 2008;25(7):795–821. DOI 10.1080/02652030802007553.

(26) Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C. Critical experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal Chem [Internet]. 2014;86(24):12143–51. DOI 10.1021/ac503307r.

(27) Shivananda CS, Asha S, Madhukumar R, Satish S, Narayana B, Byrappa K, et al. Biosynthesis of colloidal silver nanoparticles: Their characterization and potential antibacterial activity. Macromol Res [Internet]. 2016;24(8):684–90. DOI 10.1007/s13233-016-4086-5.

(28) Amendola V, Bakr O, Stellacci F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics [Internet]. 2010;1(5):85–97. DOI 10.1007/s11468-009-9120-4.

(29) Barua S, Konwarh R, Bhattacharya SS, Das P, Devi KSP, Maiti TK, et al. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids Surf B Biointerfaces [Internet]. 2013;105:37–42. DOI 10.1016/j.colsurfb.2012.12.015.

(30) Saeb ATM, Alshammari AS, Al-Brahim H, Al-Rubeaan KA. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. ScientificWorldJournal [Internet]. 2014;2014:704708. DOI 10.1155/2014/704708.

(31) Dong B, Xue N, Mu G, Wang M, Xiao Z, Dai L, et al. Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning. Ultrason Sonochem [Internet]. 2021;73:105485. DOI 10.1016/j.ultsonch.2021.105485.

(32) Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med [Internet]. 2019; 6,19(1):298. DOI 10.1186/s12906-019-2695-1.

(33) Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol [Internet]. 2010;40(4):328–46. DOI 10.3109/10408440903453074.

(34) Bekele AZ, Gokulan K, Williams KM, Khare S. Dose and Size-Dependent Antiviral Effects of Silver Nanoparticles on Feline Calicivirus, a Human Norovirus Surrogate. Foodborne Pathog Dis [Internet]. 2016;13(5):239–44. DOI 10.1089/fpd.2015.2054.

(35) Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. 2021;13(5):e1707. DOI 10.1002/wnan.1707.

(36) Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun [Internet]. 2020;533(1):195–200. DOI 10.1016/j.bbrc.2020.09.018.

(37) Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology [Internet]. 2008;19(7):075104. DOI 10.1088/0957-4484/19/7/075104.

(38) Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine [Internet]. 2019;18:196–220. DOI 10.1016/j.nano.2019.03.004.

(39) Bhavana V, Thakor P, Singh SB, Mehra NK. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci [Internet]. 2020;261:118336. DOI 10.1016/j.lfs.2020.118336.

(40) He Q, Lu J, Liu N, Lu W, Li Y, Shang C, et al. Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size. Nanomaterials (Basel) [Internet]. 2022;17,12(6):990. DOI 10.3390/nano12060990.

(41) Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, et al. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol [Internet]. 2022;13:721103. DOI 10.3389/fmicb.2022.721103.

(42) Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules [Internet]. 2011;16(10): 8894–8918. DOI 10.3390/molecules16108894.

(43) Wu M, Guo H, Liu L, Liu Y, Xie L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomedicine [Internet]. 2019;14:4247–59. DOI 10.2147/IJN.S201107.

Publicado

07-09-2022

Cómo citar

1.
Flórez-Álvarez L, Hernández JC, Zapata W, Charry- Zuluaga JI, Jaramillo JR, Taborda NA, González JD, Martínez LL, Yassin LM. In vitro antiviral effect of silver nanoparticles against SARS-CoV-2. Iatreia [Internet]. 7 de septiembre de 2022 [citado 10 de marzo de 2025];36(1). Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/348919

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a