Description of execution time dynamics for a set of concurrent real-time tasks

  • Pedro Guevara-López ESIME–IPN
  • José de Jesús Medel-Juárez CIC
  • Gustavo Delgado-Reyes ESIME–IPN


A Real-time System (RTS) implemented in a digital computer interacts with the physical world through knowledge variables (sensors, actuators, Analogical - Digital, and Digital-Analogical convertors) processing its requirements through real-time tasks (Ji: i∈Z+). Each Ji is formed by a set of instances {ji,k: i, k∈Z+, i is the task index, k is the instance index} with at least three time constraints: arrival, execution and, interval times (Li,k, Ci,k, Di,k). The execution time identification ˆCi ,k , is based on Instrumental Variable parameter estimation and the recursive state space ARMA model. The execution times were measured experimentally using a Real-time Operative System QNX 6.5 Neutrino in an Intel Core i7 processor with a speed of 2.66 GHz. This paper presents a state of the art real-time task model, execution time measurements, an Instrumental Variable parameter estimator on recursive state space identification, experimentation and, results.
= 11 veces | PDF (ESPAÑOL (ESPAÑA))
= 8 veces|


Download data is not yet available.


J. J Medel, P. Guevara, D. Cruz. Temas Selectos de Sistemas en Tiempo Real. Ed. Politécnico. México. 2007. pp. 59-70.

R. Krten. QNX Neutrino RTOS Getting Started with QNX Neutrino: A Guide for Realtime Programmers. QNX Software Systems International Corporation. Ontario. 2008. pp. 23-24.

C. Liu, J. Layland. “Scheduling algorithms for multiprogramming in a Hard Real Time System Environment.” Journal of the ACM. Vol. 20. 1973. pp. 46-61.

S. Manolache, P. Eles, Z. Peng. “Schedulability Analysis of Applications with Stochastic Task Execution Times.” ACM Transactions on Embedded Computing Systems. Vol. 3. 2004. pp. 706-735.

F. Stappert, P. Altenbernd. “Complete Worst-Case Execution Time Analysis of Straight-line Hard RealTime Programs.” Journal of Systems Architecture. Vol. 46. 2000. pp. 339-355.

G. Bernat, A. Colin, S. M. Petters. PWCET: A tool for probabilistic Worst-Case Execution Time Analysis of Real-Time Systems. Technical Report YCS-2003-353, Department of Computer Science. University of York. UK. 2003. pp. 2-4.

J. J. Medel, P. Guevara, D. Cruz. Matricial estimation for start times with stochastic behaivor by periodic real time tasks in a concurrent system. MMACTE’05 Proceedings of the 7th WSEAS International Conference on Mathematical Methods and Computational Techniques In Electrical Engineering. UK. 2005. pp. 254-255.

H. Nyquist. “Certain Topics in Telegraph Transmission Theory”. Proceedings of The IEEE. Vol. 90. February 2002. pp. 285-286

J. J. Medel. “Análisis de Dos Métodos de Estimación para Sistemas Lineales Estacionarios e Invariables en el Tiempo con Perturbaciones Correlacionales con el Estado Observable del Tipo: Una Entrada por Salida.” Computación y Sistemas. Vol. 5. 2002. pp. 216.

P. Guevara, G. Delgado, B. del Muro. Modelado y Validación de un Vector de Tiempos de Ejecución para Tareas en Tiempo Real Concurrentes que Simulan un Motor de Corriente Continua. VIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico. México. 2010. pp. 3-5.

T. Söderström, P. Stoica. “On some system identification techniques for adaptive filtering.” IEEE Trans. Circuits and Systems. Vol. CS-35. 1988. pp. 457-461.

D. B. Stewart. Measuring Execution Time and RealTime Performance. Embedded Systems Conference. Boston. 2006. pp. 2-7.

G. Delgado, P. Guevara, J. S. Falcón. Simulación Concurrente en Tiempo Real de un Motor de Corriente Continua Sobre la Plataforma QNX. XIV Congreso Latinoamericano de Control Automático, XIX Congreso de la Asociación Chilena de Control Automático ACCA. Chile. 2010. pp. 2-6.

How to Cite
Guevara-López P., Medel-Juárez J. de J., & Delgado-Reyes G. (2012). Description of execution time dynamics for a set of concurrent real-time tasks. Revista Facultad De Ingeniería Universidad De Antioquia, (61), 123-131. Retrieved from