Effect of Sn-MCM-41 hydrothermal synthesis conditions on nopol production

Authors

  • Aída Luz Villa Universidad de Antioquia
  • Consuelo Montes de Correa Universidad de Antioquia
  • Edwin Alarcón Universidad de Antioquia

Keywords:

Sn-MCM-41, nopol, β-pinene, Prins Reaction, SnCl2, hydrothermal synthesis, TPDA

Abstract


Several catalysts were prepared by hydrothermal synthesis of Sn-MCM-41 at room temperature using SnCl2 •2H2 O as precursor salt. Catalysts were characterized by TPD of ammonia, FTIR of adsorbed pyridine and TPR of H2 . The reactivity of the synthesized materials for the Prins condensation of β-pinene with paraformaldehyde to obtain nopol was explained in terms of the type of acidity. The most active catalysts showed medium strength acidity. Materials synthesized under pH control and by adding the metal source as a solid, exhibited medium strength acidity.

|Abstract
= 56 veces | PDF (ESPAÑOL (ESPAÑA))
= 26 veces|

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aída Luz Villa, Universidad de Antioquia

Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales

Consuelo Montes de Correa, Universidad de Antioquia

Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales

Edwin Alarcón, Universidad de Antioquia

Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales

References

K. A. D. Swift. “Catalytic transformations of major terpene feedstocks”. Top. Catal. Vol. 27. 2004. pp. 143 -155.

J. P. Bain. “Nopol. I. The reaction of β-pinene with formaldehyde”. J. Am. Chem. Soc. Vol. 68. 1946. pp. 638-641.

J. O. Bledsoe. “Terpenoids”. Kirk-Othmer Encyclopedia of Chemical Technology. 4th ed. J. I. Kroschwitz, M. Howe-Grant (Editors). Ed.Wiley. New York. 1997. Vol. 23. pp. 833-882.

J. M. Ricca, P. J. Derian, J. P. Hecaen, J. M. Mercier. “Derivatives of terpene origin, surfactant and/or fragrant composition containing them and detergent formulation based on this composition”. U.S. Patent N.° 5,674,823. October 7. 1997.

F. Yi, Y. Zhou, W. Li, X. Liu. “Synthesis of nopol”. Chemical World (Huaxue Shijie). Vol. 42. 2001. pp. 93-94.

U. R. Pillai, E. Sahle Demessie. “Mesoporous iron phosphate as an active, selective and recyclable catalyst for the synthesis of nopol by Prins condensation”. Chem. Commun. 2004. pp. 826-827.

M. Selvaraj, S. Kawi. “Highly selective synthesis of nopol over mesoporous and microporous solid acid catalysts”. J. Mol. Catal. A: Chem. Vol. 246. 2006. pp. 218-222.

A. Corma, M. Renz. “Water-resistant Lewis-acid sites: carbonyl-ene reactions catalyzed by tin-containing, hydrophobic molecular sieves”. ARKIVOC Vol. 8. 2007. pp. 40-48.

E. Alarcón, A. L. Villa de P., C. Montes de C. “Nopol synthesis over Sn and Zn supported on MCM-41”. Memories IV San Luis Conference. Cuernavaca. México. 2007.

E. Alarcón, A. L. Villa de P., C. Montes de C. “Evaluación de catalizadores Sn-MCM-41 en la producción de nopol”. Scientia et Technica Vol. 33. 2007. pp. 447-449.

M. Grün, K. K. Unger, A. Matsumoto, K. Tsutsumi. “Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology”. Micropor. Mesopor. Mater. Vol. 27. 1999. pp.

A. Ramírez, B. L. López, L. Sierra. “Study of the acidic sites and their modifications in mesoporous silica synthesized in acidic medium under quiescent conditions”. J. Phys. Chem. B. Vol. 107. 2003. pp. 9275-9280.

A. L. Villa de P., E. Alarcón, C. Montes de C. “Nopol synthesis over Sn-MCM-41 and Sn-kenyaite catalysts”. Catal. Today. Vol. 107-108. 2005. pp. 942- 948.

K. Chaudhari, T. K. Das, P. R. Rajmohanan, K. Lazar, S. Sivasanker, A. J. Chandwadkar. “Synthesis, characterization, and catalytic properties of mesoporous tin-containing analogs of MCM-41”. J. Catal. Vol. 183. 1999. pp. 281-291.

H. M. Mody, S. Kannan, H. C. Bajaj, V. Manu, R. V. Jasra. “A simple room temperature synthesis of MCM- 41 with enhanced thermal and hydrothermal stability”. J. Porous Mater. Vol. 15. 2008. pp. 571-579.

X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu. “Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA”. J. Phys. Chem. B. Vol. 101. 1997. pp. 6525-6531.

T. Burch, V. Caps, D. Gleeson, S. Nishiyama, S. C. Tsang. “Nanoscopic tin-oxygen linings on mesoporous silica as a novel catalyst for organic hydrogen transfer reaction”. Appl. Catal. A Gen. Vol. 194. 2000. pp. 297- 307.

E. Janiszewska, S. Kowalak, W. Supronowicz, F. Roessner. “Synthesis and properties of stannosilicates”. Micropor. Mesopor. Mater. Vol. 117. 2009. pp. 423–430.

S. Wang, X. Ma, J. Gong, X. Yang, H. Guo, G. Xu. “Transesterification of Dimethyl Oxalate with Phenol under SnO2/SiO2 Catalysts”. Ind. Eng. Chem. Res. Vol. 43. 2004. pp. 4027-4030.

F. Arena, R. Dario, A. Parmaliana. “A characterization study of the surface acidity of solid catalysts by temperature programmed methods”. Appl. Catal. A: Gen. Vol. 170. 1998. pp. 127-137.

B. Chakraborty, B. Viswanathan. “Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption”. Catal. Today. Vol. 49. 1999. pp. 253-260.

M. Casagrande, L. Storaro, M. Lenarda, J. Gersich, L. Stievano, F. E. Wagner, T. Montanari. “Synthesis and structural characterization of ordered supermicroporous MSU type silica–tin molecular sieves”. J. Mater. Chem. Vol. 14. 2004. pp. 1010-1016.

E. Alarcón, A. L. Villa de P., C. Montes de C. “Obtención de nopol con Sn-MCM-41 sintetizado hidrotermicamente”. Memorias XXI Congreso Colombiano de Ingeniería Química. Cali. Colombia. 2007.

P. Shah, A. V. Ramaswamy, K. Lazar, V. Ramaswamy. “Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction”. Appl. Catal. A: Gen. Vol. 273. 2004. pp. 239-248.

A. Corma, T. Navarro, M. Renz. “Lewis acidic Sn(IV) centers—grafted onto MCM-41—as catalytic sites for the Baeyer–Villiger oxidation with hydrogen peroxide”. J. Catal. Vol. 219. 2003. pp. 242-246.

M. Boronat, P. Concepción, A. Corma, M. Renz. “Peculiarities of Sn-Beta and potential industrial applications”. Catal. Today. Vol. 121. 2007. pp. 39-44.

V. V. Kovalenko, A. A. Zhukova, M. N. Rumyantseva, A. M. Gaskov, V. V. Yushchenko, I. I. Ivanova, T. Pagnier. “Surface chemistry of nanocrystalline SnO2: Effect of thermal treatment and additives”. Sensor. Actuat. B. Vol. 126. 2007. pp. 52-55.

Published

2013-07-15

How to Cite

Villa , A. L., Montes de Correa, C. ., & Alarcón , E. (2013). Effect of Sn-MCM-41 hydrothermal synthesis conditions on nopol production. Revista Facultad De Ingeniería Universidad De Antioquia, (49), 19–29. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/15883

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.