Oxidación catalítica de α-pineno con metiltrioxorenio inmovilizado en resinas
DOI:
https://doi.org/10.17533/udea.redin.344340Palabras clave:
metiltrioxorenio, polivinilpiridina, heterogeneización, α-pineno, oxidación catalítica, peróxido de hidrógenoResumen
Se investigó la inmovilización del catalizador homogéneo metiltrioxorenio (MTO), CH3ReO3, en resinas basadas en vinilpiridina sintetizadas por diferentes procedimientos. Los catalizadores se caracterizaron por espectroscopia IR y UV-Vis y la composición elemental de nitrógeno y renio se determinó por ICP-MS. Los análisis FTIR indicaron la presencia de grupos ReO3 y ReO en los catalizadores heterogeneizados; en los análisis UV-Vis se observaron nuevas bandas después de tratar los soportes con MTO. La eficiencia de incorporación de renio fue mayor en PVP comercial y en el copolímero preparado en suspensión. Además, la oxidación del soporte disminuyó la incorporación del MTO. Los catalizadores se evaluaron en la oxidación de á-pineno con peróxido de hidrógeno. Los catalizadores soportados en PVP presentaron baja conversión del á-pineno (7%), pero la selectividad al epóxido de á-pineno fue alta (92%). Además, la más alta conversión del á-pineno (50%) se obtuvo con el MTO en los soportes copolimerizados y oxidados; con MeCN/DCM como solvente se obtuvieron principalmente aldehído canfolénico y sobrerol, productos de rearreglo del epóxido. En general, la eficiencia del oxidante fue baja y ésta se favoreció en terbutanol y acetato de etilo como solventes.
Descargas
Citas
Suh, Y.W. et al. “Redox-mesoporous molecular sieves as bifunctional catalyst for the one-pot synthesis of campholenic aldehyde from α-pinene”. En: J. Mol. Catal. A. 2001. Vol. 174. p. 249. DOI: https://doi.org/10.1016/S1381-1169(01)00192-3
Fdil, N. et al. “Terpenic olefin epoxidation using metals acetylacetonates as catalysts”. En: J. Mol. Catal. A. 1996. Vol. 108. p. 15. DOI: https://doi.org/10.1016/1381-1169(95)00284-7
Madhava, Reddy et al. “Cobalt catalyzed oxidation of cyclic alkenes with molecular oxygen: allylic oxidation versus double bond attack”. En: Tetrahedron Lett. 1995. Vol. 36. N.° 1. p. 159. DOI: https://doi.org/10.1016/0040-4039(94)02200-U
Romão, C. C. et al. “Rhenium (VII) –oxo and imido complexes: synthesis, structures and applications”. En: Chem. Rev. 1997. N.° 97. p. 3246. DOI: https://doi.org/10.1021/cr9703212
Villa de P., A. L. “Epoxidation of monoterpenes by homogeneous and heterogeneous catalytic systems”. Disertaciones de Agricultura. Tesis Doctoral. Katholieke Universiteit Leuven. Bélgica, 2000. 172 p.
Texeira Gómez, M. F. y Antunes, O. A. C. “Autoxidation of limonene, -pinene and β-pinene by dioxygen catalyzed by Co(OAc)2/bromide”. En: J. Mol. Catal. A. 1997. N.° 121. p. 145. DOI: https://doi.org/10.1016/S1381-1169(97)00010-1
Komiya, N. et al. “Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether”. En: J. Mol. Catal. A. 1997. N.° 117. p. 21. DOI: https://doi.org/10.1016/S1381-1169(96)00263-4
Kholdeeva, O. A. et al. “Selective alkene epoxidation by molecular oxygen in the presence of aldehyde and different type catalysts containing cobalt”. En: Stud. Surf. Sci. Catal. Vol. 110. Proceedings of the 3rd world congress on oxidation catalysis. San Diego, C.A., USA. Sep. 21-26, 1997. DOI: https://doi.org/10.1016/S0167-2991(97)81058-0
Rudler, H. et al. “Assessment of MTO as a catalyst for the synthesis of acid sensible epoxides: Use of the biphasic system H2O2/CH2Cl2 with and without bipyridine and influence of the substituents on the double bonds”. En: J. Mol. Catal. A. 1998. Vol. 133. p. 255. DOI: https://doi.org/10.1016/S1381-1169(97)00278-1
González, L. M.; Villa, A. L.; Gelbard, G. y Montes, C. “Efecto del solvente y del ligando en la epoxidación de -pineno con el sistema metiltrioxorenio/peróxido de hidrógeno (MTO/H2O2)”. En: Revista Facultad de Ingeniería. N.° 30. p. 61. 2003. Universidad de Antioquia. Medellín, Colombia.
Kühn, F. E. et al. “Trigonal-bypiramidal Lewis base adducts of methyltrioxorhenium (VII) and their bisperoxo congeners: characterization application in catalytic epoxidation and density functional mechanistic study”. En: Chem. Eur. J. 1999. Vol. 5. N.° 12. p. 3603. DOI: https://doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3603::AID-CHEM3603>3.0.CO;2-W
Piquemal, J. Y. et al. “Evidence for the presence of Mo (VI), W (VI) or Re (VII) species in silica-based materials. New approaches to highly dispersed oxo-species in mesoporous silicates”. En: Chem. Commun. 1999. p. 1195. DOI: https://doi.org/10.1039/a902537e
Buffon, R. et al. “Surface organometallic chemistry of rhenium: attemtps to characterize a surface carbene in metathesis of olefins with the catalyst CH3ReO3/Nb2O5”. En: J. Mol. Catal. 1992. Vol. 72. DOI: https://doi.org/10.1016/0304-5102(92)80038-I
Adam, W. et al. “NaY zeolite as host for the selective heterogeneous oxidation of silanes and olefins with hydrogen peroxide catalyzed by methyltrioxorhenium”. En: J. Org. Chem. 2000. Vol. 65. p. 2894. DOI: https://doi.org/10.1021/jo991908e
Wang, T. J. et al. “Silica supported methyltrioxorhenium complex of γ-(2,2’-dipyridyl)-Amino propylpolysiloxane as a novel catalyst for epoxidation of alkenes”. En: J.M.S. Pure Appl. Chem. 1998. Vol. A35. N.° 3. p. 531. DOI: https://doi.org/10.1080/10601329808001994
Dallmann, K. y Buffon, R. “Sol-gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins”. En: Catal. Commun. 2000. Vol. 1. N.os 1-4. p. 9. DOI: https://doi.org/10.1016/S1566-7367(00)00005-4
Herrmann, W. A. et al. “Use of organorhenium compounds for the oxidation of multiple C-C bonds, oxidation processes based thereon and novel organorhenium compounds”. En: United States Patent 5,155,247. Oct. 13, 1992.
Saladino, R. “Preparation and structural characterization of polymer-supported methylrhenium trioxide systems as efficient and selective catalyts for the epoxidation of olefins”. En: J. Org. Chem. 2002. Vol. 67. N.° 4. p. 1323. DOI: https://doi.org/10.1021/jo011033f
Saladino, R. et al. “Selective epoxidation of monoterpenes with H2O2 and polymer-supported methylrheniumtrioxide systems”. En: Tetrahedron. 2003. Vol. 59. pp. 7403-7408. DOI: https://doi.org/10.1016/S0040-4020(03)01145-1
Adolfsson, N. et al. “Comparison of amine additives most effective in the new methyltrioxorhenium-catalyzed epoxidation process”. En: Tetrahedron Lett. 1999. Vol. 40. N.° 21. p. 3991. DOI: https://doi.org/10.1016/S0040-4039(99)00661-9
Nunes, C. D. et al. “Synthesis and characterization of methyltrioxorhenium (VII) immobilized in bipyridylfunctionalized mesoporous silica”. En: Eur. J. Inorg. Chem. 2002. p. 1100. DOI: https://doi.org/10.1002/1099-0682(200205)2002:5<1100::AID-EJIC1100>3.0.CO;2-B
Malek, A. y Ozin, G. “On the nature of methyltrioxorhenium (VII) encapsulated in zeolite Y”. En: Adv. Mater. 1995. Vol. 7. N.° 2. p. 160. DOI: https://doi.org/10.1002/adma.19950070212
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.