Automatic detection of cranial fractures in radiological images using a pattern classifier
DOI:
https://doi.org/10.17533/udea.redin.13535Keywords:
radiographic images, pattern classification, alpha-beta associative models, cranial fracturesAbstract
In this work, an automatic pattern classification system is presented, whose goal is detecting the presence or absence of fractures in cranial radiographic images. The basis for the proposal is an original coding technique, coupled with an emerging pattern classifier: the Gamma classifier. This proposal draws concepts from three areas of current scientific research: Mathematical Morphology, image histograms, and Alpha-Beta associative models. Also, an experimental study is presented, comparing the performance shown by the system to that exhibited by other pattern classifiers present in current scientific literature. The results obtained are competitive, reaching 94.23% of correct classification.
Downloads
References
A. Meyer-Baese. Pattern Recognition in Medical Imaging. Ed. Academic Press. 2003. pp. 8-57.
V. VandeVyver, M. Lemmerling, K. Verstraete. “Multiple growing skull fractures”. Journal Belge de Radiologie. Vol. 90. 2007. pp. 52.
A. Taha, Y. C. Gan, S. V. Chavda, J. Wasserberg. “A review of base of skull fractures”. Trauma. Vol. 9. 2007. pp. 29-37. DOI: https://doi.org/10.1177/1460408607083961
R. Ramaswamy, D. Macarthur, B. D. White. “Vascular threat in base of skull fractures”. British Journal of Neurosurgery. Vol. 18. 2004. pp. 197-198. DOI: https://doi.org/10.1080/02688690410001681118
J. K. Wong, B. Blenkinsop, D. Chiasson, R. E. Wood. “A simple means of demonstrating skull fractures using radiographic altered image geometry”. Journal of Forensic Odonto-Stomatology. Vol. 15. 1997. pp. 17-21.
K.Y. C. Goh, A. Ahuja, S. B. Walkden, W. S. Poon. “Is routine computed tomographic (CT) scanning necessary in suspected basal skull fractures”. Injury. Vol. 28. 1997. pp. 353-357. DOI: https://doi.org/10.1016/S0020-1383(97)00024-7
R. E. Wood, R. Blend, S. E. Brooks, B. Blenkinsop. “Use of computer assisted tomography for woundweapon comparison of lethal skull fractures”. Journal of the Canadian Society of Forensic Science. Vol. 29. 1996. pp. 49-55. DOI: https://doi.org/10.1080/00085030.1996.10757047
J. Serra. Image Analysis and Mathematical Morphology. Vol. I. Ed. Academic Press. London. 1982. pp. 610.
J. L. Díaz De León, C. Yáñez Márquez. Introducción a la morfología matemática de conjuntos. Serie Ciencia de la Computación. Fondo de Cultura Económica. México. 2003. pp. 79-152.
M. H. Hassoun. Associative Neural Memories. Ed. Oxford University Press. New York. 1993. pp. 3-30.
T. Kohonen. Self-Organization and Associative Memory. Ed. Springer-Verlag. Berlin. 1989. pp. 233- 248. DOI: https://doi.org/10.1007/978-3-642-88163-3
K. Steinbuch. “Die Lernmatrix”. Kybernetik. Vol. 1. 1961. pp. 36-45. DOI: https://doi.org/10.1007/BF00293853
J. A. Anderson. “A simple neural network generating an interactive memory”. Mathematical Biosciences. Vol. 14. 1972. pp. 197-220. DOI: https://doi.org/10.1016/0025-5564(72)90075-2
T. Kohonen. “Correlation matrix memories”. IEEE Transactions on Computers. Vol. 4. 1972. pp. 353-359. DOI: https://doi.org/10.1109/TC.1972.5008975
G. X. Ritter, P. Sussner, J. L. Diaz-de-Leon. “Morphological associative memories”. IEEE Transactions on Neural Networks. Vol. 9. 1998. pp. 281-293. DOI: https://doi.org/10.1109/72.661123
C. Yáñez Márquez. Memorias Asociativas basadas en Relaciones de Orden y Operadores Binarios. Tesis de Doctorado. Instituto Politécnico Nacional. Centro de Investigación en Computación, México. 2002. pp. 53- 62.
M. E. Acevedo Mosqueda. Memorias Asociativas Bidireccionales Alfa-Beta. Tesis de Doctorado. Instituto Politécnico Nacional. Centro de Investigación en Computación. México. 2006. pp. 35-89.
M. E. Acevedo Mosqueda, C. Yáñez Márquez, I. López Yáñez. “Alpha-Beta Bidirectional Associative Memories: Theory and Applications”. Neural Processing Letters. Vol. 26. 2007. pp. 1-40. DOI: https://doi.org/10.1007/s11063-007-9040-2
R. Flores Carapia. Memorias asociativas Alfa-Beta basadas en el código Johnson-Möbius modificado. Tesis de Maestría. Instituto Politécnico Nacional. Centro de Investigación en Computación. México. 2006. pp. 45-61.
C. Yáñez-Márquez, E. M. Felipe-Riverón, I. LópezYáñez, R. Flores-Carapia. “A Novel Approach to Automatic Color Matching”. Lecture Notes in Computer Science. Ed. Springer-Verlag .Berlin Heidelberg. 2006. pp. 529-538. DOI: https://doi.org/10.1007/11892755_55
I. López Yáñez. Clasificador Automático de Alto Desempeño. Tesis de Maestría. Instituto Politécnico Nacional. Centro de Investigación en Computación. México. 2007. pp. 18-41.
C. Yáñez-Márquez, I. López-Yáñez, G. dela L. SáenzMorales. “Analysis and Prediction of Air Quality Data with the Gamma Classifier”. Lecture Notes in Computer Science. Ed. Springer-Verlag. Berlin Heidelberg. 2008. pp. 651-658. DOI: https://doi.org/10.1007/978-3-540-85920-8_79
I. López-Yáñez, C. Yáñez -Márquez, V. M. SilvaGarcía. “Forecasting Air Quality Data with the Gamma Classifier”. Pattern Recognition. Y. Peng-Yeng (editor). INTECH. Croatia. 2009. pp. 499-512. Available from: http://sciyo.com/articles/show/title/forecasting-airquality-data-with-the-gamma-classifier Consultado el 20 de febrero de 2011. DOI: https://doi.org/10.5772/7528
L. O. López-Leyva, C. Yáñez-Márquez, R. FloresCarapia, O. Camacho-Nieto. “Handwritten Digit Classification Based on Alpha-Beta Associative Model”. Lecture Notes in Computer Science. Ed. Springer-Verlag. Berlin Heidelberg. 2008. pp. 437-444. DOI: https://doi.org/10.1007/978-3-540-85920-8_54
L. G. Yamamoto, R. M. Di Mauro, A. S. Inaba. Radiology Cases in Pediatric Emergency Medicine. Vol. 5. Ed. Kapiolani Medical Center, University of Hawaii, Honolulu, Hawaii, USA. 1999. pp. 1-52.
R. C. Gonzalez, R. E. Woods. Digital Image Processing. Ed. Prentice Hall. New Jersey. USA. 2002. pp. 88-103.
A. R. Webb. Statistical Pattern Recognition. 2nd. ed. Ed. John Wiley & Sons, Ltd. 2002. pp. 1-514. DOI: https://doi.org/10.1002/0470854774
T. M. Cover, P. E. Hart. “Nearest Pattern Classification”. IEEE Trans. on Information Theory. Vol. 13. 1967. pp. 21-27. DOI: https://doi.org/10.1109/TIT.1967.1053964
Y. Wu, K. Ianekiev, V. Govindaraju. “Improved k-nearest neighbor classification”. Pattern Recognition. Vol. 35. 2002. pp. 2311-2318. DOI: https://doi.org/10.1016/S0031-3203(01)00132-7
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten. “The WEKA Data Mining Software: An Update”. SIGKDD Explorations. Vol. 11. 2009. pp. 10-18. DOI: https://doi.org/10.1145/1656274.1656278
K. Hauser, B. Longo, F. Jameson. Harrison Principios de Medicina Interna. Ed. McGraw Hill. 2006. pp. 2509, 2694-2699.
R. Snell. Neuroanatomía Clínica. Ed. Médica Panamericana. 2001. pp. 28-29.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.