Three-dimensional reconstruction of superficial mechanical deformations in metallic plates, based on fringes projection
DOI:
https://doi.org/10.17533/udea.redin.13822Keywords:
three-dimensional reconstruction, fringe projection, phase shifting, nondestructive testing, phase unwrapping, continuous phaseAbstract
This paper presents a methodology for three-dimensional reconstruction of deformed metallic surface plates, by using nondestructive techniques. Specifically, the fringe projection optic method and phase shifting algorithm were used for three-dimensional reconstruction of deformed surfaces with different color and texture. Based on this reconstruction and by using image digital processing, maximum depth, length and area of defect were measured. Resultant measurements were compared with those obtained by using manual elements. In the experiment, a resolution of 14 mm was obtained for an observation area of 12x10 cm2, which makes this approach appropriated for computing depth, diameter and area of defects present for example in oil pipes, and integrity parameters could be adequately computed by using a Nondestructive Testing (NDT).
Downloads
References
Z. M. Pérez, L. Romero. Sistema Óptico de Reconstrucción Tridimensional para la Detección de Ampollas en Recubrimientos. Trabajo de Grado. Escuela de Física. Universidad Industrial de Santander. 2004. pp. 7-31.
R. Palmer-Jones, P. Hopkins, D. Eyre. “Understanding the results of an intelligent pig inspection”. Penspen Integrity. Vol. 8. 2006. pp. 1-16.
W. D. Corbett. “Revestimientos protectores industriales”. ASTM Standardization News. Vol. 34. 2006. pp.10-21.
J. W. Insausti, P. Benedetti, L. Iurman, A. Lucaioli, P. Traversa, N. Mazini. “Comparación de rugosidades de superficies metálicas medidas con rugosímetro electromecánico y con análisis de imágenes de microscopía electrónica”. Jornadas SAM 2000-IV Coloquio Latinoamericano de Fractura y Fatiga. Neuquén (Argentina). Vol. 1. 2000. pp. 863-870.
D. Tulsiani. A Fringe Projection System for Measurement of Condensing Fluid Films in Reduced Gravity. Thesis. Worcester Polytechnic Institute. 2005. pp. 11-32.
A. Martínez, J. A. Rayas, J. M. Flores, R. Rodríguez, D. Donato. “Técnicas Ópticas para el contorneo de superficies tridimensionales”. Revista Mexicana de Física. Vol. 51. 2005. pp. 431-436.
P. Gili, C. Carrasco, Jc. Martín, J. Yangüela, A. Arias. “Análisis Digital de la Papila con Cámara de Fondo Convencional: Estudio de Variabilidad”. Archivos de la Sociedad Española de Oftalmología. Vol. 79. 2004. pp. 125-130. DOI: https://doi.org/10.4321/S0365-66912004000300006
J. Meneses, T. Gharbi, J. Y. Cornu. “Sistema óptico de reconstrucción 3-D para el análisis de deformaciones por desgaste en prótesis de rodilla”. Óptica Pura y Aplicada. Vol. 36. 2003. pp. 11-16.
D. A. Gómez. Dispositivo óptico para la reconstrucción tridimensional de la piel humana por el método de proyección de franjas. Trabajo de grado. Departamento de física. Universidad del Cauca. 2009. pp. 18-65.
Z. M. Pérez. Aproximación Espacio-Temporal para la medida absoluta de la forma 3d de un objeto por proyección de franjas. Trabajo de maestría. Escuela de Física. Universidad Industrial de Santander. 2006. pp. 19-23.
T. Luhmann, F. Bethmann, B. Herd, J. Ohm. “Comparison and verification of optical 3-d surface measurement systems”. The international archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XXXVII. 2008. pp. 51-56.
W. Lu-shen and P. Qing-jin. “Research and development of fringe projection-based methods in 3D shape reconstruction”. Journal of Zhejiang University SCIENCE A. Vol. 7. 2006. pp. 1026-1036. DOI: https://doi.org/10.1631/jzus.2006.A1026
DLP™ Technology Texas Instruments. http://www. plus-america.com/papers.html. consultada el 22 enero de 2010.
Departamento de Electrónica, Automática e Informática Industrial, Universidad Politécnica de Madrid. “Práctica 2: Adquisición y calibración de cámaras de video”, Prácticas de Robótica y Visión Artificial. http://www.elai.upm.es:8009/spain/Asignaturas/MIP_VisionArtificial/PracticasVA/prac2VA_AdquisicionGUI.pdf. Consultada el 22 enero de 2010.
Y. D. Amaya, J. A. Ruiz. Localización dinámica de móviles y obstáculos en una escena controlada para aplicaciones en robótica. Trabajo de grado. Escuela Ingenierías Eléctrica. Electrónica y Telecomunicaciones. Universidad Industrial de Santander. 2005. pp. 8-13.
The MathWorks, Inc. Image Acquisition Toolbox 3, Acquire images and video from industry-standard hardware. Vol. 4. 2007. pp. 1-4.
J. Meneses, T. Gharbi, P. Humbert. “Phase-unwrapping algorithm for images with high noise content based on a local histogram”. Applied Optics. Vol. 44. 2005. pp. 1207-1215. DOI: https://doi.org/10.1364/AO.44.001207
D. M. Quintero. Reconstrucción de defectos tridimensionales mediante proyección de franjas, en platinas metálicas con deformaciones mecánicas superficiales”. Trabajo de grado. Escuela Ingenierías Eléctrica, Electrónica y Telecomunicaciones. Universidad Industrial de Santander. 2010. pp. 1-14.
R. Ernst, A. Weckenmann, R. Velgan. “Local wall thickness measurement of formed sheet metal using fringe projection technique”. XVII IMEKO World Congress, Metrology in the 3rd Millennium. Croatia. 2003. pp.1802-1805.
F. Pernkopf, P. O’Leary. “Image acquisition techniques for automatic visual inspection of metallic surfaces”. NDT&E International. Vol. 36. 2003. pp. 609-617. DOI: https://doi.org/10.1016/S0963-8695(03)00081-1
The American Society of Mechanical Engineers. “Manual for determining the remaining strength of corroded pipelines. A supplement to ASME B31G code for pressure piping”, ASME B31G-1991(Revision of ANSI/ASME B31G-1984), ASME International. New York.1991. pp. 6-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.