Effect of the synthesis variables of TiO2 on the photocatalytic activity towards the degradation of water pollutants
DOI:
https://doi.org/10.17533/udea.redin.14643Keywords:
TiO2, photocatalytic oxidation, sol-gel, hydrothermal synthesis, orange IIAbstract
In this work, TiO2 photocatalysts were synthesized using a conventional sol-gel and hydrothermal synthesis methods with steam pressure treatment. Photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectra (DRS) and N2 adsorption-desorption. The photoactivity of the samples was analyzed towards the photooxidation of the azo dye Orange II (Or-II) and phenol using different illumination set-ups to compare the activity features of photocatalysts. The effect of the synthesis variables such as the synthesis route, water/alcoxide and alcohol/alcoxide ratios, as well as the alcohol type was analyzed. TiO2 photocatalysts obtained by hydrothermal synthesis have a better photoactivity than the particles synthesized by the chosen sol-gel route, reaching the Or-II degradation photoactivity of the commercial TiO2 P25. On the other hand, the water/alcoxide ratio and alcohol type have a marked effect on the photoactivity of the hydrothermal synthesized TiO2, whereas the alcohol/alcoxide ratio does not have a relevant effect on the Or-II degradation photoactivity.
Downloads
References
O. Carp, C. L. Huisman, A. Reller. “Photoinduced reactivity of titanium dioxide”. Prog. Solid State Chem. Vol. 32. 2004. pp. 33-177. DOI: https://doi.org/10.1016/j.progsolidstchem.2004.08.001
J. M. Herrman. “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants”. Catal. Today. Vol. 53. 1999. pp. 115-129. DOI: https://doi.org/10.1016/S0920-5861(99)00107-8
D. Gumy, C. Morais, P. Bowen, C. Pulgarín, S. Giraldo, R. Hajdu, J. Kiwi. “Catalytic activity of commercial TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point”. Appl. Catal. B. Vol. 63. 2006. pp. 76-84. DOI: https://doi.org/10.1016/j.apcatb.2005.09.013
J. Blanco Galvez, P. Fernández Ibáñez, S. Malato Rodríguez. “Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview”. J. Sol. Energy Eng. Vol. 129. 2007. pp. 4-15. DOI: https://doi.org/10.1115/1.2390948
C. Castro, A. Arámbula, A. Centeno, S. A. Giraldo. “Degradación Heliofotocatalítica de Escherichia coli en sistemas tipo Desinfección SODIS, con Dióxido de Titanio modificado”. Inf. Tecnol. Vol. 20. 2009. pp. 29- 36. DOI: https://doi.org/10.4067/S0718-07642009000600005
L. Zan, W. Fa, T. Peng, Z. Gong. “Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B”. J. Photochem. Photobiol. B. Vol. 86 2007. pp. 165-169. DOI: https://doi.org/10.1016/j.jphotobiol.2006.09.002
I. A. Montoya, T. Viveros, J. M. Dominguez, L.A. Canales, I. Schifter. “On the effects of the solgel synthesis parameters on textural and structural properties of TiO2”. Catal. Lett. Vol. 15. 1992. pp. 207- 217. DOI: https://doi.org/10.1007/BF00770913
Y. Xu, W. Zheng, W. Liu. “Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2”. J. Photochem. Photobiol. A. Vol. 122. 1999. pp. 57-60. DOI: https://doi.org/10.1016/S1010-6030(98)00470-5
R. Anliker. “Ecotoxicology of dyestuffs - a joint effort by industry”. J. Ecotox. Environ. Saf. Vol. 3. 1979. pp. 59-74. DOI: https://doi.org/10.1016/0147-6513(79)90060-5
M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahnemann. “Environmental applications of semiconductor photocatalysis”. Chem. Rev. Vol. 95. 1995. pp. 69-96. DOI: https://doi.org/10.1021/cr00033a004
P. Kubelka, F. Munk. “Ein Beitrag zur Optik der Farbanstriche”. Z. Tech. Phys. Vol. 12. 1931. pp. 593- 601.
S. Ardizzone, C. Bianchi, G. Cappelletti, S. Gialanella, C. Pirola, V. Ragaini. “Tailored Anatase/Brookite Nanocrsytalline TiO2. The optimal Particle Features for Liquid and Gas-Phase Photocatalytic Reactions”. J. Phys. Chem. C. Vol. 111. 2007. pp. 13222-13231. DOI: https://doi.org/10.1021/jp0741096
K. Y. Jung, S. B. Park. “Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene”. J. Photochem. Photobiol. A. Vol. 127. 1999. pp. 117-122. DOI: https://doi.org/10.1016/S1010-6030(99)00132-X
D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer. “Explaining the enhanced photocatalytic activity of Degussa P-25 mixed phase oxide TiO2 using EPR”. J. Phys. Chem. Vol. 107. 2003. pp. 4545- 4549. DOI: https://doi.org/10.1021/jp0273934
A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano. “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile, and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions”. Colloids Surf. A: Physicochem. Eng. Aspects. Vol. 317. 2008. pp. 366-376. DOI: https://doi.org/10.1016/j.colsurfa.2007.11.005
C. A. Castro-López. A. Centeno, S. A. Giraldo. “Fe-modified TiO2 photocatalyst for the oxidative degradation of recalcitrant water contaminants”. Catal. Today. Vol. 157. 2010. pp. 119-124. DOI: https://doi.org/10.1016/j.cattod.2010.04.050
A. Sobczynski, L. Duczman, W. Zmudzinsky. “Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism”. J. Mol. Catal. A. Vol. 213. 2004. pp. 225-230. DOI: https://doi.org/10.1016/j.molcata.2003.12.006
J. N. Hart, L. Bourgeois, R. Cervini, Y. B. Cheng, G. P. Simon, L. Spiccia. “Low temperature crystallization behavior of TiO2 derived from a sol-gel process”. J. Sol-Gel Sci. Techn. Vol. 42. 2007. pp. 107-117. DOI: https://doi.org/10.1007/s10971-007-1536-8
E. Alonso, I. Montequi, M. J. Cocero. “Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2”. J. Supercritic. Fluids. Vol. 49. 2009. pp. 233-238. DOI: https://doi.org/10.1016/j.supflu.2009.01.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.