Effect of the synthesis variables of TiO2 on the photocatalytic activity towards the degradation of water pollutants

Authors

  • Camilo Andrés Castro López Industrial University of Santander
  • Sonia Esperanza Reyes Gómez Industrial University of Santander
  • Aristóbulo Centeno Hurtado Industrial University of Santander
  • Sonia Azucena Giraldo Duarte Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.redin.14643

Keywords:

TiO2, photocatalytic oxidation, sol-gel, hydrothermal synthesis, orange II

Abstract

In this work, TiO2 photocatalysts were synthesized using a conventional sol-gel and hydrothermal synthesis methods with steam pressure treatment. Photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectra (DRS) and N2 adsorption-desorption. The photoactivity of the samples was analyzed towards the photooxidation of the azo dye Orange II (Or-II) and phenol using different illumination set-ups to compare the activity features of photocatalysts. The effect of the synthesis variables such as the synthesis route, water/alcoxide and alcohol/alcoxide ratios, as well as the alcohol type was analyzed. TiO2 photocatalysts obtained by hydrothermal synthesis have a better photoactivity than the particles synthesized by the chosen sol-gel route, reaching the Or-II degradation photoactivity of the commercial TiO2 P25. On the other hand, the water/alcoxide ratio and alcohol type have a marked effect on the photoactivity of the hydrothermal synthesized TiO2, whereas the alcohol/alcoxide ratio does not have a relevant effect on the Or-II degradation photoactivity.

|Abstract
= 449 veces | PDF (ESPAÑOL (ESPAÑA))
= 47 veces|

Downloads

Download data is not yet available.

Author Biographies

Camilo Andrés Castro López, Industrial University of Santander

Catalysis Research Center (CICAT), School of Chemical Engineering.

Sonia Esperanza Reyes Gómez, Industrial University of Santander

Catalysis Research Center (CICAT), School of Chemical Engineering.

Aristóbulo Centeno Hurtado, Industrial University of Santander

Catalysis Research Center (CICAT), School of Chemical Engineering.

Sonia Azucena Giraldo Duarte, Industrial University of Santander

Catalysis Research Center (CICAT), School of Chemical Engineering.

References

O. Carp, C. L. Huisman, A. Reller. “Photoinduced reactivity of titanium dioxide”. Prog. Solid State Chem. Vol. 32. 2004. pp. 33-177. DOI: https://doi.org/10.1016/j.progsolidstchem.2004.08.001

J. M. Herrman. “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants”. Catal. Today. Vol. 53. 1999. pp. 115-129. DOI: https://doi.org/10.1016/S0920-5861(99)00107-8

D. Gumy, C. Morais, P. Bowen, C. Pulgarín, S. Giraldo, R. Hajdu, J. Kiwi. “Catalytic activity of commercial TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point”. Appl. Catal. B. Vol. 63. 2006. pp. 76-84. DOI: https://doi.org/10.1016/j.apcatb.2005.09.013

J. Blanco Galvez, P. Fernández Ibáñez, S. Malato Rodríguez. “Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview”. J. Sol. Energy Eng. Vol. 129. 2007. pp. 4-15. DOI: https://doi.org/10.1115/1.2390948

C. Castro, A. Arámbula, A. Centeno, S. A. Giraldo. “Degradación Heliofotocatalítica de Escherichia coli en sistemas tipo Desinfección SODIS, con Dióxido de Titanio modificado”. Inf. Tecnol. Vol. 20. 2009. pp. 29- 36. DOI: https://doi.org/10.4067/S0718-07642009000600005

L. Zan, W. Fa, T. Peng, Z. Gong. “Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B”. J. Photochem. Photobiol. B. Vol. 86 2007. pp. 165-169. DOI: https://doi.org/10.1016/j.jphotobiol.2006.09.002

I. A. Montoya, T. Viveros, J. M. Dominguez, L.A. Canales, I. Schifter. “On the effects of the solgel synthesis parameters on textural and structural properties of TiO2”. Catal. Lett. Vol. 15. 1992. pp. 207- 217. DOI: https://doi.org/10.1007/BF00770913

Y. Xu, W. Zheng, W. Liu. “Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2”. J. Photochem. Photobiol. A. Vol. 122. 1999. pp. 57-60. DOI: https://doi.org/10.1016/S1010-6030(98)00470-5

R. Anliker. “Ecotoxicology of dyestuffs - a joint effort by industry”. J. Ecotox. Environ. Saf. Vol. 3. 1979. pp. 59-74. DOI: https://doi.org/10.1016/0147-6513(79)90060-5

M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahnemann. “Environmental applications of semiconductor photocatalysis”. Chem. Rev. Vol. 95. 1995. pp. 69-96. DOI: https://doi.org/10.1021/cr00033a004

P. Kubelka, F. Munk. “Ein Beitrag zur Optik der Farbanstriche”. Z. Tech. Phys. Vol. 12. 1931. pp. 593- 601.

S. Ardizzone, C. Bianchi, G. Cappelletti, S. Gialanella, C. Pirola, V. Ragaini. “Tailored Anatase/Brookite Nanocrsytalline TiO2. The optimal Particle Features for Liquid and Gas-Phase Photocatalytic Reactions”. J. Phys. Chem. C. Vol. 111. 2007. pp. 13222-13231. DOI: https://doi.org/10.1021/jp0741096

K. Y. Jung, S. B. Park. “Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene”. J. Photochem. Photobiol. A. Vol. 127. 1999. pp. 117-122. DOI: https://doi.org/10.1016/S1010-6030(99)00132-X

D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer. “Explaining the enhanced photocatalytic activity of Degussa P-25 mixed phase oxide TiO2 using EPR”. J. Phys. Chem. Vol. 107. 2003. pp. 4545- 4549. DOI: https://doi.org/10.1021/jp0273934

A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano. “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile, and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions”. Colloids Surf. A: Physicochem. Eng. Aspects. Vol. 317. 2008. pp. 366-376. DOI: https://doi.org/10.1016/j.colsurfa.2007.11.005

C. A. Castro-López. A. Centeno, S. A. Giraldo. “Fe-modified TiO2 photocatalyst for the oxidative degradation of recalcitrant water contaminants”. Catal. Today. Vol. 157. 2010. pp. 119-124. DOI: https://doi.org/10.1016/j.cattod.2010.04.050

A. Sobczynski, L. Duczman, W. Zmudzinsky. “Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism”. J. Mol. Catal. A. Vol. 213. 2004. pp. 225-230. DOI: https://doi.org/10.1016/j.molcata.2003.12.006

J. N. Hart, L. Bourgeois, R. Cervini, Y. B. Cheng, G. P. Simon, L. Spiccia. “Low temperature crystallization behavior of TiO2 derived from a sol-gel process”. J. Sol-Gel Sci. Techn. Vol. 42. 2007. pp. 107-117. DOI: https://doi.org/10.1007/s10971-007-1536-8

E. Alonso, I. Montequi, M. J. Cocero. “Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2”. J. Supercritic. Fluids. Vol. 49. 2009. pp. 233-238. DOI: https://doi.org/10.1016/j.supflu.2009.01.005

Published

2013-02-28

How to Cite

Castro López, C. A., Reyes Gómez, S. E., Centeno Hurtado, A., & Giraldo Duarte, S. A. (2013). Effect of the synthesis variables of TiO2 on the photocatalytic activity towards the degradation of water pollutants. Revista Facultad De Ingeniería Universidad De Antioquia, (57), 49–56. https://doi.org/10.17533/udea.redin.14643