Low temperature catalytic adsorption of NO over activated carbon honeycomb (ACH) monoliths

Authors

  • Diana López University of Antioquia
  • Jorge A. Hoyos University of Antioquia
  • Fanor Mondragón University of Antioquia

DOI:

https://doi.org/10.17533/udea.redin.14646

Keywords:

catalyst, adsorption, activated carbon, tars, honeycomb monolith

Abstract

An activated carbon honeycomb (ACH) monolith was developed for the adsorption of NO at 30ºC. For ACH monoliths preparation carboxymethylcellulose (CMC) and coal tar pitch were used as binder and co-binder, respectively. The effects of the addition of O2 and the presence of copper as catalyst were studied. For the Cu-impregnated activated carbon monolith samples, the presence of O2 favored NO adsorption by increasing the breakthrough time and the adsorption capacity.

|Abstract
= 196 veces | PDF (ESPAÑOL (ESPAÑA))
= 68 veces|

Downloads

Download data is not yet available.

Author Biographies

Diana López, University of Antioquia

Chemical Group of Energy Resources and Environment, Institute of Chemistry.

Jorge A. Hoyos, University of Antioquia

Chemical Group of Energy Resources and Environment, Institute of Chemistry.

Fanor Mondragón, University of Antioquia

Chemical Group of Energy Resources and Environment, Institute of Chemistry.

References

E. I. Administration. Annual Energy Outlook. 2009. United States Government: Washington DC. pp. 9-11.

W. H. Organization. The World Health Report. 2007. World Health Organization: Geneva( Switzerland). pp. 31-32.

J. L. Williams. “Monolith structures, materials, properties and uses”. Catalysis Today Vol. 69. 2001. pp. 3-9. DOI: https://doi.org/10.1016/S0920-5861(01)00348-0

K. P. Gadkaree, J. F. Mach. “Method of making activated carbon honeycombs having vaying adsorption capacities”. United States Patent 5510063. New York. 1996. pp. 1-10.

J. M. Gatica. J. M. Rodriguez-Izquierdo, D. Sánchez, T. Chafik, S. Harti, H. Zaitan, H. Vidal. “Originally prepared carbon-based honeycomb monoliths with potential application as VOCs adsorbents”. C.R. Chimie. Vol. 9. 2006. pp. 1215-1220. DOI: https://doi.org/10.1016/j.crci.2006.02.002

T. Vergunst. M. J. G. Linders, F. Kapteijn, J. Moulijn, “Carbon-based monolithic structures”. Catalysis Reviews. Vol. 42. 2001. pp. 291-314. DOI: https://doi.org/10.1081/CR-100107479

A. Tomita. “Suppression of nitrogen oxides emission by carbonaceous reductants”. Fuel Processing Technology, 2001. Vol. 71. pp. 53-70. DOI: https://doi.org/10.1016/S0378-3820(01)00136-9

V. I. Pârvulescu, S. Bogoshian, V. Pârvulescu, S. M. Jung, P. Grange. “Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalysts”. Journal of Catalysis. Vol. 217. 2003. pp. 172-185. DOI: https://doi.org/10.1016/S0021-9517(03)00028-9

P. Nikolov, M. Khristova, D. Mehandjiev. “Lowtemperature NO removal over copper-containing activated carbon”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 295. 2007. pp. 239-245. DOI: https://doi.org/10.1016/j.colsurfa.2006.09.004

M. Bishop, D. L. Ward. “The direct determination of mineral matter in coal”. Fuel. Vol. 37. 1958. pp. 191- 199.

D. López, R. Buitrago, A. Sepúlveda Escribano, F. Rodríguez Reinoso, F. Mondragón. “Low Temperature Catalytic Adsorption of NO on Activated Carbon Materials”. Langmuir. Vol. 23: 2007. pp. 12131- 12137. DOI: https://doi.org/10.1021/la701501q

R. Buitrago. Adsorción Catalítica Simultánea de SO2 y NO a Baja Temperatura en Carbones Activados. Instituto de Química. 2007. Universidad de Antioquia. Medellín. p. 82.

R. Q. Long, R.T. Yang. “Carbon Nanotubes as a Superior Sorbent for Nitrogen Oxides”. Industrial & Engineering Chemistry Research. Vol. 40. 2001. pp. 4288-4291. DOI: https://doi.org/10.1021/ie000976k

J. Zawadzki, M. Wisniewski, K. Skowronska. “Heterogeneous reactions of NO2 and NO-O2 on the surface of carbons”. Carbon. Vol. 41. 2003. pp. 235- 246. DOI: https://doi.org/10.1016/S0008-6223(02)00281-6

J. Zawadzki, M. Wisniewski. “An infrared study of the behavior of SO2 and NOx over carbon and carbonsupported catalysts”. Catalysis Today. Vol. 119. 2007. p. 213-218. DOI: https://doi.org/10.1016/j.cattod.2006.08.037

O. Byl, P. Kondratyuk, J. T. Yates. “Adsorption and Dimerization of NO Inside Single-Walled Carbon Nanotubes: An Infrared Spectroscopic Study”. The Journal of Physical Chemistry B. Vol. 107. 2003. pp. 4277-4279. DOI: https://doi.org/10.1021/jp022565i

P. García, F. Coloma, C. Salinas, F. Mondragón. “Nitrogen complexes formation during NO-C reaction at low temperature in presence of O2 and H2O”. Fuel Processing Technology. Vol. 77-78. 2002. pp. 255-259. DOI: https://doi.org/10.1016/S0378-3820(02)00014-0

M. J. Illán-Gómez, E. Raymundo-Piñero, A. Linares- Solano, C. Salinas. “Catalytic NOx reduction by carbon supporting metals”. Applied Catalysis B: Environmental. Vol. 20. 1999. p. 267-275. DOI: https://doi.org/10.1016/S0926-3373(98)00119-2

W. Klose, S. Rincón. “Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour”. Fuel. Vol. 86. 2007. pp. 203-209. DOI: https://doi.org/10.1016/j.fuel.2006.06.017

Z. H. Zhu, J. Finnerty, G. Q. Lu, R.T. Yang. “Opposite Roles of O2 in NO-and N2O-Carbon Reactions: An Ab Initio Study”. Journal of Physical Chemistry B. Vol. 105. 2001.pp. 821-830. DOI: https://doi.org/10.1021/jp003036m

W. J. Zhang, S. Rabiei, A. Bagreev, M.S. Zhuang, F. Rasouli. “Study of NO adsorption on activated carbons”. Applied Catalysis B: Environmental. Vol. 83. 2008. pp. 63-71. DOI: https://doi.org/10.1016/j.apcatb.2008.02.003

Y. Kong, C.Y. Cha. “NOx adsorption on char in presence of oxygen and moisture”. Carbon. Vol. 34. 1996. pp. 1027-1033. DOI: https://doi.org/10.1016/0008-6223(96)00050-4

Published

2013-02-28

How to Cite

López, D., Hoyos, J. A., & Mondragón, F. (2013). Low temperature catalytic adsorption of NO over activated carbon honeycomb (ACH) monoliths. Revista Facultad De Ingeniería Universidad De Antioquia, (57), 75–84. https://doi.org/10.17533/udea.redin.14646