Unsupported sulfides obtained from high specific area mixed oxides as hydrotreating catalysts
DOI:
https://doi.org/10.17533/udea.redin.14653Keywords:
mixed oxides, hydrodesulphurization, hydrogenation, co-precipitation, hydrothermal synthesisAbstract
Several bimetallic Ni-Mo, Co-Mo and Co-W materials were prepared by co-precipitation and a Ni-W material through hydrothermal synthesis. The characterization by X-ray diffraction (XRD) of molybdates confirmed the formation of layered fy phase, while the tungstates showed both fy semi-crystalline and wolframite. The thermal analyses (TGA and DTA) of these materials showed phase transition around 400°C, excepting by CoMofy to 350°C; these temperatures were selected to calcine the bimetallic precursors to obtain mixed oxides, which exhibited high specific surface areas as compared to analogous materials reported by different synthesis pathways. The Fourier transformed infrared spectroscopy (FTIR) confirmed the phase formation of the species in precursors and mixed oxides. The catalytic activity of the sulfurated mixed oxides was simultaneously evaluated in the hydrodesulphurization (HDS) of dibenzotiophene (DBT) and the hydrogenation (HYD) of tetraline. Results showed a similar behavior to commercial catalysts. The effect of promotors (Ni and Co) is discussed.
Downloads
References
S. Mignard, S. Kaztelan, M. Dorbon. A. Billon, P. Zarrasin. “Deep HDS of middle destillates using a high loading CoMo catalyst”. Stud. Surf. Sci. Catal. Vol. 100. 1996. pp. 209-216. DOI: https://doi.org/10.1016/S0167-2991(96)80021-8
S. Eijsbouts, S. W. Mayo, K. Fujita. “Unsupported transition metal sulfide catalysts: From fundamentals to industrial application”. Appl. Cat. A. Vol. 322. 2007. pp. 58-66. DOI: https://doi.org/10.1016/j.apcata.2007.01.008
H. Topsoe, B. S. Clausen, F. E. Massoth. Hydrotreating Catalysis. Science and Technology. Springer-Verlag. New York. 1996. pp.14-65. DOI: https://doi.org/10.1007/978-3-642-61040-0_1
S. Pergher, A. Corma, V. Fornes. “Materiales laminares pilareados: preparación y propiedades”. Quim Nova. Vol. 22. .1999. pp. 693-709. DOI: https://doi.org/10.1590/S0100-40421999000500013
D. Levin, S. L. Soled, J. Y. Ying. “Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation”. Inorg. Chem. Vol. 35. 1996. pp. 4191-4197. DOI: https://doi.org/10.1021/ic951200s
H. Pezerat. “Problemes de non-stoechiométrie dans certains molybdates hydratés de zinc, cobalt et nickel”. Bull. Soc. Fr. Minéral. Cristallogr. Vol. 90. 1967. pp. 549-557. DOI: https://doi.org/10.3406/bulmi.1967.6043
C. Mazzocchia, A. Kaddouri, R. Anouchinsky. “On the NiO, MoO3 mixed oxide correlation between preparative procedures thermal activation and catalytic properties”. Solid State Ionics. Vol. 63-65. 1993. pp. 731-735. DOI: https://doi.org/10.1016/0167-2738(93)90187-8
J. L. Brito, J. Laine, K. C. Pratt. “Temperatureprogrammed reduction of Ni-Mo oxides”. J. Mater. Sci. Vol. 24. 1989. pp. 425-431. DOI: https://doi.org/10.1007/BF01107422
I. Matsuura, S. Mizuno, H. Hashiba. “Acidic properties of molybdate based catalysts for propylene oxidation”. Polyhedron. Vol. 5. 1986. pp. 111-117. DOI: https://doi.org/10.1016/S0277-5387(00)84895-0
J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz, J. L. Brito. “Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies”. J. Phys. Chem. B. Vol. 102. 1998. pp. 1347-1355. DOI: https://doi.org/10.1021/jp972137q
J. A. Rodriguez, J. C. Hanson, S. Chaturvedi, A. Maiti, J. L. Brito. “Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4”. J Chem. Phy. Vol. 112. 2000. pp. 935-945. DOI: https://doi.org/10.1063/1.480619
D. Levin, J. Y. Ying. “Oxidative Dehydrogenation of Propane by Non-Stoichiometric Nickel Molybdate”. Studies in Surface Science and Catalysis. Vol. 110. 1997. pp. 367-373. DOI: https://doi.org/10.1016/S0167-2991(97)80997-4
S. Chaturvedia, J. A. Rodriguez, J. L. Brito. “Characterization of pure and sulfided NiMoO4 catalysts using synchrotron-based X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR)”. Catal. Lett. Vol. 51. 1998. pp. 85-93
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Perotti, J. Rouquérol, T. Siemieniewska. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”. Pure & Appli. Chem. Vol. 57. 1985. pp. 603-619. DOI: https://doi.org/10.1351/pac198557040603
D. Vie, E. Martinez, F. Sapiña, J. V. Folgado, A. Beltrán, R. X. Valenzuela, V. Cortés-Corberán. “Freeze-Dried Precursor - based Synthesis of Nanostructured Cobalt- Nickel Molybdates Co1-xNixMoO4”. Chem. Mater. Vol. 16. 2004. pp. 1697-1703. DOI: https://doi.org/10.1021/cm035079w
J. Vila, F. Sapiña, E. Martínez, V. Cortés, J. Podobinski. “Synthesis and characterization of nanostructured Co1-xNixMoO4 catalysts active in the ODH of propane”. Contrib. Sci. Vol. 4. 2008. pp. 223–229.
J. M. Quintana-Melgoza, J. Cruz-Reyes, M. Avalos- Borja. “Synthesis and characterization of NiWO4 crystals”. Mater. Lett. Vol. 47. 2001. pp. 314-318. DOI: https://doi.org/10.1016/S0167-577X(00)00272-X
M. J. Girgis, B. C. Gates. “Reactivities, Reaction Networks, and Kinetics in High-pressure Catalytic Hydroprocessing”. Ind. Eng. Chem. Res. Vol. 30. 1991. pp. 2021-2058. DOI: https://doi.org/10.1021/ie00057a001
I.V. Babich, J.A. Moulijn. “Science and technology of novel processes for deep desulfurization of oil refinery streams: a review”. Fuel. Vol. 82. 2003. pp. 607-631. DOI: https://doi.org/10.1016/S0016-2361(02)00324-1
J. A. Rodriguez, S. Chaturvedy, J. C. Hanson, J. L. Brito. “Reaction of H2 and H2S with CoMoO4 and NiMoO4: TPR, XANES, Time-Resolved XRD, and Molecular-Orbital Studies”. J. Phys. Chem. B. Vol. 103. 1999. pp. 770-781. DOI: https://doi.org/10.1021/jp983115m
P. Grange, X. Vanhaeren. “Hydrotreating catalysts, an old story with new challenges”. Catal. Today. Vol. 36. 1997. pp. 375-391. DOI: https://doi.org/10.1016/S0920-5861(96)00232-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.