Unsupported sulfides obtained from high specific area mixed oxides as hydrotreating catalysts

Authors

  • Sandra Amaya University of Antioquia
  • Yordy Licea Federal University of Rio de Janeiro
  • Maurin Salamanca University of Antioquia
  • Arnaldo Faro Federal University of Rio de Janeiro
  • Adriana Echavarría University of Antioquia
  • Luz Amparo Palacio University of Antioquia

DOI:

https://doi.org/10.17533/udea.redin.14653

Keywords:

mixed oxides, hydrodesulphurization, hydrogenation, co-precipitation, hydrothermal synthesis

Abstract

Several bimetallic Ni-Mo, Co-Mo and Co-W materials were prepared by co-precipitation and a Ni-W material through hydrothermal synthesis. The characterization by X-ray diffraction (XRD) of molybdates confirmed the formation of layered fy phase, while the tungstates showed both fy semi-crystalline and wolframite. The thermal analyses (TGA and DTA) of these materials showed phase transition around 400°C, excepting by CoMofy to 350°C; these temperatures were selected to calcine the bimetallic precursors to obtain mixed oxides, which exhibited high specific surface areas as compared to analogous materials reported by different synthesis pathways. The Fourier transformed infrared spectroscopy (FTIR) confirmed the phase formation of the species in precursors and mixed oxides. The catalytic activity of the sulfurated mixed oxides was simultaneously evaluated in the hydrodesulphurization (HDS) of dibenzotiophene (DBT) and the hydrogenation (HYD) of tetraline. Results showed a similar behavior to commercial catalysts. The effect of promotors (Ni and Co) is discussed.

|Abstract
= 133 veces | PDF (ESPAÑOL (ESPAÑA))
= 64 veces|

Downloads

Download data is not yet available.

Author Biographies

Sandra Amaya, University of Antioquia

Catalysts and Adsorbents Group.

Yordy Licea, Federal University of Rio de Janeiro

Department of Physicochemistry, Institute of Chemistry.

Maurin Salamanca, University of Antioquia

Chemistry Group of Energy Resources and Environment, Institute of Chemistry.

Arnaldo Faro, Federal University of Rio de Janeiro

Department of Physicochemistry, Institute of Chemistry.

Adriana Echavarría, University of Antioquia

Catalysts and Adsorbents Group.

Luz Amparo Palacio, University of Antioquia

Catalysts and Adsorbents Group.

References

S. Mignard, S. Kaztelan, M. Dorbon. A. Billon, P. Zarrasin. “Deep HDS of middle destillates using a high loading CoMo catalyst”. Stud. Surf. Sci. Catal. Vol. 100. 1996. pp. 209-216. DOI: https://doi.org/10.1016/S0167-2991(96)80021-8

S. Eijsbouts, S. W. Mayo, K. Fujita. “Unsupported transition metal sulfide catalysts: From fundamentals to industrial application”. Appl. Cat. A. Vol. 322. 2007. pp. 58-66. DOI: https://doi.org/10.1016/j.apcata.2007.01.008

H. Topsoe, B. S. Clausen, F. E. Massoth. Hydrotreating Catalysis. Science and Technology. Springer-Verlag. New York. 1996. pp.14-65. DOI: https://doi.org/10.1007/978-3-642-61040-0_1

S. Pergher, A. Corma, V. Fornes. “Materiales laminares pilareados: preparación y propiedades”. Quim Nova. Vol. 22. .1999. pp. 693-709. DOI: https://doi.org/10.1590/S0100-40421999000500013

D. Levin, S. L. Soled, J. Y. Ying. “Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation”. Inorg. Chem. Vol. 35. 1996. pp. 4191-4197. DOI: https://doi.org/10.1021/ic951200s

H. Pezerat. “Problemes de non-stoechiométrie dans certains molybdates hydratés de zinc, cobalt et nickel”. Bull. Soc. Fr. Minéral. Cristallogr. Vol. 90. 1967. pp. 549-557. DOI: https://doi.org/10.3406/bulmi.1967.6043

C. Mazzocchia, A. Kaddouri, R. Anouchinsky. “On the NiO, MoO3 mixed oxide correlation between preparative procedures thermal activation and catalytic properties”. Solid State Ionics. Vol. 63-65. 1993. pp. 731-735. DOI: https://doi.org/10.1016/0167-2738(93)90187-8

J. L. Brito, J. Laine, K. C. Pratt. “Temperatureprogrammed reduction of Ni-Mo oxides”. J. Mater. Sci. Vol. 24. 1989. pp. 425-431. DOI: https://doi.org/10.1007/BF01107422

I. Matsuura, S. Mizuno, H. Hashiba. “Acidic properties of molybdate based catalysts for propylene oxidation”. Polyhedron. Vol. 5. 1986. pp. 111-117. DOI: https://doi.org/10.1016/S0277-5387(00)84895-0

J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz, J. L. Brito. “Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies”. J. Phys. Chem. B. Vol. 102. 1998. pp. 1347-1355. DOI: https://doi.org/10.1021/jp972137q

J. A. Rodriguez, J. C. Hanson, S. Chaturvedi, A. Maiti, J. L. Brito. “Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4”. J Chem. Phy. Vol. 112. 2000. pp. 935-945. DOI: https://doi.org/10.1063/1.480619

D. Levin, J. Y. Ying. “Oxidative Dehydrogenation of Propane by Non-Stoichiometric Nickel Molybdate”. Studies in Surface Science and Catalysis. Vol. 110. 1997. pp. 367-373. DOI: https://doi.org/10.1016/S0167-2991(97)80997-4

S. Chaturvedia, J. A. Rodriguez, J. L. Brito. “Characterization of pure and sulfided NiMoO4 catalysts using synchrotron-based X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR)”. Catal. Lett. Vol. 51. 1998. pp. 85-93

K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Perotti, J. Rouquérol, T. Siemieniewska. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”. Pure & Appli. Chem. Vol. 57. 1985. pp. 603-619. DOI: https://doi.org/10.1351/pac198557040603

D. Vie, E. Martinez, F. Sapiña, J. V. Folgado, A. Beltrán, R. X. Valenzuela, V. Cortés-Corberán. “Freeze-Dried Precursor - based Synthesis of Nanostructured Cobalt- Nickel Molybdates Co1-xNixMoO4”. Chem. Mater. Vol. 16. 2004. pp. 1697-1703. DOI: https://doi.org/10.1021/cm035079w

J. Vila, F. Sapiña, E. Martínez, V. Cortés, J. Podobinski. “Synthesis and characterization of nanostructured Co1-xNixMoO4 catalysts active in the ODH of propane”. Contrib. Sci. Vol. 4. 2008. pp. 223–229.

J. M. Quintana-Melgoza, J. Cruz-Reyes, M. Avalos- Borja. “Synthesis and characterization of NiWO4 crystals”. Mater. Lett. Vol. 47. 2001. pp. 314-318. DOI: https://doi.org/10.1016/S0167-577X(00)00272-X

M. J. Girgis, B. C. Gates. “Reactivities, Reaction Networks, and Kinetics in High-pressure Catalytic Hydroprocessing”. Ind. Eng. Chem. Res. Vol. 30. 1991. pp. 2021-2058. DOI: https://doi.org/10.1021/ie00057a001

I.V. Babich, J.A. Moulijn. “Science and technology of novel processes for deep desulfurization of oil refinery streams: a review”. Fuel. Vol. 82. 2003. pp. 607-631. DOI: https://doi.org/10.1016/S0016-2361(02)00324-1

J. A. Rodriguez, S. Chaturvedy, J. C. Hanson, J. L. Brito. “Reaction of H2 and H2S with CoMoO4 and NiMoO4: TPR, XANES, Time-Resolved XRD, and Molecular-Orbital Studies”. J. Phys. Chem. B. Vol. 103. 1999. pp. 770-781. DOI: https://doi.org/10.1021/jp983115m

P. Grange, X. Vanhaeren. “Hydrotreating catalysts, an old story with new challenges”. Catal. Today. Vol. 36. 1997. pp. 375-391. DOI: https://doi.org/10.1016/S0920-5861(96)00232-5

Published

2013-02-28

How to Cite

Amaya, S., Licea, Y., Salamanca, M., Faro, A., Echavarría, A., & Palacio, L. A. (2013). Unsupported sulfides obtained from high specific area mixed oxides as hydrotreating catalysts. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 58–67. https://doi.org/10.17533/udea.redin.14653

Most read articles by the same author(s)