Reconstruction of 3d video from 2d real-life sequences

Authors

  • Eduardo Ramos Diaz National Polytechnic Institute of Mexico
  • Volodymyr Ponomaryov National Polytechnic Institute of Mexico

DOI:

https://doi.org/10.17533/udea.redin.14658

Keywords:

video sequence, anaglyph, depth map, dynamic range

Abstract

In this paper, a novel method that permits to generate 3D video sequences using 2D real-life sequences is proposed. Reconstruction of 3D video sequence is realized using depth map computation and anaglyph synthesis. The depth map is formed employing the stereo matching technique based on global error energy minimization with smoothing functions. The anaglyph construction is implemented using the red component alignment interpolating the previously formed depth map. Additionally, the depth map transformation is realized in order to reduce the dynamic range of the disparity values, minimizing ghosting and enhancing color preservation. Several real-life color video sequences that contain different types of motions, such as translational, rotational, zoom and combination of previous ones are used demonstrating good visual performance of the proposed 3D video sequence reconstruction.

|Abstract
= 138 veces | PDF (ESPAÑOL (ESPAÑA))
= 67 veces|

Downloads

Download data is not yet available.

References

B. Blundell, A. Schwartz. Volumetric three dimensional display systems. Ed. Wiley. New York. Vol. 5. 2000. pp. 196-200.

M. Halle. “Autostereoscopic displays and computer graphics”. Comput Graph. Vol. 31. 1997. pp. 58-62. DOI: https://doi.org/10.1145/271283.271309

E. Dubois. “A projection method to generate anaglyph stereo”. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 3. 2001. pp. 1661- 1664.

I. Ideses, L. Yaroslavsky. “A method for generating 3D video from a single video stream”. Proc of the Vision, Modeling and Visualization. Ed. Aka Gmbh. Erlangen. Germany. 2002. pp. 435-438.

I. Ideses, L. Yaroslavsky. “New Methods to produce high quality color anaglyphs for 3-D visualization”. Lecture Notes in Computer Science. Vol. 3212. 2004. pp. 273-380. DOI: https://doi.org/10.1007/978-3-540-30126-4_34

S. S. Beauchemin, J. L. Barron. “The computation of optical flow”. ACM Computing surveys. Vol. 27. 1995. pp. 436-466. DOI: https://doi.org/10.1145/212094.212141

J. L. Barron, D. J. Fleet, S. S. Beauchemin. “Performance of optical flow techniques”. International Journal of Computer Vision. Vol. 12. 1994. pp. 43-77. DOI: https://doi.org/10.1007/BF01420984

D. J. Heeger. “Model for the extraction of image flow”. Journal of the Optical Society of America. Vol. 4. 1987. pp. 1455-1471. DOI: https://doi.org/10.1364/JOSAA.4.001455

D. J. Heeger. “Optical flow using spatiotemporal filters”. International Journal Computer Vision. Vol. 1. 1988. pp. 279-302. DOI: https://doi.org/10.1007/BF00133568

X. Huang, E. Dubois. “3D reconstruction based on a hybrid disparity estimation algorithm”. IEEE International Conference on Image Processing. Vol. 8. 2006. pp. 1025-1028. DOI: https://doi.org/10.1109/ICIP.2006.312674

C. Zitnick, T. Kanade. “A cooperative algorithm for stereo matching and occlusion detection”. Robotics Institute Technical Reports. No. CMU.RI-TR-99-35. Carnegie Mellon University. 1999.

H. H. Barker, T. O. Binford. “Depth from edge and intensity based stereo”. Proc. of the 7th International Joint Conference on Artificial Intelligence. Vancouver. 1981. pp. 631-636.

D. Comaniciu, P. Meer. “Mean-shift: a robust approach toward feature space analysis”. IEEE Transactions Pattern Anal Machine Intelligence. Vol. 24. 2002. pp. 603-619. DOI: https://doi.org/10.1109/34.1000236

B. B. Alagoz. “Obtaining depth maps from color images by region based stereo matching algorithms”. OncuBilim Algorythm and Systems Labs. Vol. 08. 2008. Art.4. pp. 1-12.

I. Ideses, L. Yaroslavsky, B. Fishbain. “Real time 2D to 3D video conversion”. J. Real Time Image Proc. Vol. 2. 2007. pp. 3-9. DOI: https://doi.org/10.1007/s11554-007-0038-9

I. Ideses, L. Yaroslavsky. “3 methods to improve quality of color anaglyph”. J. Optics A. Pure, Applied Optics. Vol. 7. 2005. pp. 755-762. DOI: https://doi.org/10.1088/1464-4258/7/12/008

I. Ideses, L. Yaroslavsky, B. Fishbain, R. Vistuch. “3D compressed from 2D video”. Stereoscopic displays and virtual reality systems XIV in Proc. of SPIE & IS&T Electronic Imaging. Vol. 6490. 2007. pp. 64901C. DOI: https://doi.org/10.1117/12.703416

L. Yaroslavsky, J. Campos, M. Espínola, I. Ideses. “Redundancy of steroscopic images: Experimental evaluation”. Optics Express. Vol. 13. 2005. pp. 0895-10907. DOI: https://doi.org/10.1364/OPEX.13.010895

L. Yaroslavsky, Holography and digital image processing. Ed. Kluwer Academic Publishers. Boston. 2004. pp. 600. DOI: https://doi.org/10.1007/978-1-4757-4988-5

W. Sanders, D. McAllister. Producing anaglyphs formsynthetic images. Conf. 5005: A stereoscopic displays and applications XIV. Proc. SPIE/IS&T. Vol. 5006. 2003. pp. 348-358. DOI: https://doi.org/10.1117/12.474130

Published

2013-02-28

How to Cite

Ramos Diaz, E., & Ponomaryov, V. (2013). Reconstruction of 3d video from 2d real-life sequences. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 111–121. https://doi.org/10.17533/udea.redin.14658

Most read articles by the same author(s)