A harmony search algorithm for clustering with feature selection

Authors

  • Carlos Cobos University of Cauca
  • Elizabeth León National University of Colombia
  • Martha Mendoza University of Cauca

DOI:

https://doi.org/10.17533/udea.redin.14724

Keywords:

harmony search, clustering, feature selection

Abstract

This paper presents a new clustering algorithm, called IHSK, with feature selection in a linear order of complexity. The algorithm is based on the combination of the harmony search and K-means algorithms. Feature selection uses both the concept of variability and a heuristic method that penalizes the presence of dimensions with a low probability of contributing to the current solution. The algorithm was tested with sets of synthetic and real data, obtaining promising results.

|Abstract
= 124 veces | PDF (ESPAÑOL (ESPAÑA))
= 56 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Cobos, University of Cauca

Information Technology Research Group (GTI), Electronic and Telecommunications Engineering Faculty.

Elizabeth León, National University of Colombia

Research Laboratory of Intelligent Systems (LISI).

Martha Mendoza, University of Cauca

Information Technology Research Group (GTI), Electronic and Telecommunications Engineering Faculty.

References

A. K. Jain, M. N. Murty, P. J. Flynn. “Data clustering: a review”. ACM Comput. Surv. Vol. 31. 1999. pp. 264- 323. DOI: https://doi.org/10.1145/331499.331504

K. Jacob, N. Charles, T. Marc. Grouping Multidimensional Data Recent Advances in Clustering. Ed. Springer-Verlag. New York. 2006. pp. 25-72.

J. Dy, G.C.E. Brodley, J. Mach. “Feature Selection for Unsupervised Learning”. Learn. Res. Vol.5. 2004. pp. 845-889.

Z. Geem, J. Kim, G.V. Loganathan. “A New Heuristic Optimization Algorithm”. Harmony Search Simulation. Vol.76. 2001. pp. 60-68. DOI: https://doi.org/10.1177/003754970107600201

M. G. H Omran, M. Mahdavi. “Global-best harmony search”. Applied Mathematics and Computation, Vol. 198. 2008. pp. 643-656. DOI: https://doi.org/10.1016/j.amc.2007.09.004

M. Mahdavi, M. Fesanghary, E. Damangir. “An improved harmony search algorithm for solving optimization problems”. Applied Mathematics and Computation. Vol. 188. 2007. pp. 1567-1579. DOI: https://doi.org/10.1016/j.amc.2006.11.033

S. J. Redmondand, C. Heneghan. “A method for initialising the K-means clustering algorithm using kd-trees”. Pattern Recognition Letters. Vol. 28. 2007. pp. 965-973. DOI: https://doi.org/10.1016/j.patrec.2007.01.001

A. K Jain, R.C. Dubes. Algorithms for clustering data. Ed. Prentice-Hall Inc. Englewood Cliffs (NJ.). 1988. pp.143-222.

A. Webb. Statistical Pattern Recognition. 2ª ed. Ed. John Wiley & Sons. Malvern (UK) 2002. pp. 361- 408. DOI: https://doi.org/10.1002/0470854774

A. L. Blum, P. Langley. “Selection of relevant features and examples in machine learning”. Artificial Intelligence. Vol. 97. 1997. pp. 245-271. DOI: https://doi.org/10.1016/S0004-3702(97)00063-5

K. Ron, H. J. George. “Wrappers for feature subset selection”. Artif. Intell. Vol. 97. 1997. pp. 273-324. DOI: https://doi.org/10.1016/S0004-3702(97)00043-X

H. Zeng, Y. M. Cheung. “A new feature selection method for Gaussian mixture clustering”. Pattern Recognition. Vol. 42. 2009. pp. 243-250. DOI: https://doi.org/10.1016/j.patcog.2008.05.030

S. Osiński, J. Stefanowski, D. Weiss. “Lingo search results clustering algorithm based on Singular Value Decomposition”. International Conference on Intelligent Information Systems (IIPWM). Zakapore (Poland). 2004. pp. 359-397. DOI: https://doi.org/10.1007/978-3-540-39985-8_37

J. Han, M. Kamber. Data Mining Concepts and Techniques. 2ª ed. Ed.Morgan Kaufmann Publishers. 2006.pp.71-72.

S. Weiguo, L. Xiaohui, M. Fairhurst. “A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection”. IEEE Transactions on Knowledge and Data Engineering. Vol. 20. 2008. pp. 868-879. DOI: https://doi.org/10.1109/TKDE.2008.33

Published

2013-03-01

How to Cite

Cobos, C., León, E., & Mendoza, M. (2013). A harmony search algorithm for clustering with feature selection. Revista Facultad De Ingeniería Universidad De Antioquia, (55), 153–164. https://doi.org/10.17533/udea.redin.14724