Concrete deterioration in Colombian urban atmospheres

Authors

  • Esteban Correa University of Antioquia
  • Sergio Peñaranda University of Antioquia
  • Juan Castaño University of Antioquia
  • Félix Echavarría University of Antioquia

Keywords:

concrete, atmospheric deterioration, carbon dioxide, chlorides, EIS

Abstract

The combination of atmospheric pollutants, such as carbon dioxide and chlorides has a synergistic effect accelerating the degradation process of concrete. However, in Colombia it has not been carried out field tests inreal urban environments to assess the deterioration of concrete and its relation to both, carbonation and chloride content. In this work, cylindrical concrete probes were exposed in different urban atmospheres with the aim of establishing correlations between the concrete deterioration and the type of atmosphere. To evaluate the corrosion rate on the rebar and the percentage of carbonated probe, Electrochemical Impedance Spectroscopy (EIS) and physicochemical tests with phenolphthalein were used, respectively.

|Abstract
= 191 veces | PDF (ESPAÑOL (ESPAÑA))
= 52 veces|

Downloads

Download data is not yet available.

Author Biographies

Esteban Correa, University of Antioquia

Corrosion and Protection Group, University of Antioquia – University Research Headquarters (SIU).

Sergio Peñaranda, University of Antioquia

Corrosion and Protection Group, University of Antioquia – University Research Headquarters (SIU).

Juan Castaño, University of Antioquia

Corrosion and Protection Group, University of Antioquia – University Research Headquarters (SIU).

Félix Echavarría, University of Antioquia

Corrosion and Protection Group, University of Antioquia – University Research Headquarters (SIU).

References

D. J. Anstice, C. L. Page, M. M. Page. “The pore solution phase of carbonated cement pastes”. Cement and Concrete Research. 2005. Vol. 35. pp. 377-383.

P. Venkatesan, N. Palaniswamya, K. Rajagopal. “Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment”. Progress in Organic Coatings. 2006. 56. pp. 8-12.

M. Moreno, W. Morris, M. G. Alvarez, G. S. Duffó. “Corrosion of reinforcing steel in simulated concrete pore solutions Effect of carbonation and chloride content”. Corrosion Science. 2004. 46. pp. 2681-2699.

B. Díaz, X. R. Nóvoa, M. C. Pérez. “Study of the chloride diffusion in mortar: A new method of determining diffusion coefficients based on impedance measurements”. Cement and Concrete Composites. 2006. Vol. 28. pp. 237-245.

G. Batis, E. Rakanta. “Corrosion of steel reinforcement due to atmospheric pollution”. Cement and Concrete Composites. 2005. Vol. 27. pp. 269-275.

J. Xiao, J. Li, B. Zhu, Z. Fan. “Experimental study on strength and ductility of carbonated concrete elements”. Construction and Building Materials. 2002. Vol. 16. pp. 187-192.

M. Sánchez, J. Gregori, C. Alonso, J.J. García-Jareño, H. Takenouti, F. Vicente. “Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores”. Electrochimica Acta. 2007. Vol. 52. pp. 7634-7641.

H. Song, S. Kwon, K. Byun, C. Park. “Predicting carbonation in early-aged cracked concrete”. Cement and Concrete Research. 2006. Vol. 36. pp. 979-989.

ASTM. Standard Specification for Standard Sand. West Conshohocken. PA. ASTM (Standard: ASTM C778). 2006. pp. 1-3.

ASTM. Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement. West Conshohocken. PA. ASTM (Standard: ASTM 706/A 706/M). 2008. pp. 1-5.

R. Polder, C. Andrade, B. Elsener, O. Vennesland, J. Gulikers, R. Weidert, M. Raupach. “Test methods for on site measurement of resistivity of concrete”. Materials and Structures, 2000. Vol. 33. pp. 603-611.

J. Chang, W. Yeih, R. Huang, J. Chi. “Mechanical Properties of Carbonated Concrete”. Journal of the Chinese Institute of Engineers. 2003. Vol. 26. pp. 513- 522.

D. A. Koleva, J. Hu, A. L. A. Fraaij, P. Stroeven, N. Boshkov, J. H. W. de Wit. “Quantitative characterization of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack”. Corrosion Science. 2006. Vol. 48. pp. 4001-4019.

G. Qiao, J, Ou. “Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA”. Electrochimica Acta. 2007. Vol. 52. pp. 8008-8019.

O. Trocónis. Manual de inspección, evaluación y diagnostico de corrosión en estructuras de hormigón armado.Cyted-Red Durar. 1997. pp. 134.

Grupo de Corrosión y Protección. Impacto de la corrosividad atmosférica sobre la infraestructura del SEC y sobre los cotos AOM. Informe Final. Código Proyecto 115-06-17398. 2008. Universidad de Antioquia. Medellín. pp. 113.

ISO. Corrosion of metals and alloys – Corrosivity of atmospheres – Classsification. Geneva. Switzerland. ISO (Standard: ISO 9223). 1992. pp. 1-15.

Published

2013-03-07

How to Cite

Correa, E., Peñaranda, S., Castaño, J., & Echavarría, F. (2013). Concrete deterioration in Colombian urban atmospheres. Revista Facultad De Ingeniería Universidad De Antioquia, (52), 41–46. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14801