Fe and Mn retention in natural water by adsorption-oxidation on clinoptilolite

Authors

  • Carolina Cuchimaque Lugo Industrial University of Santander
  • Luz Yolanda Vargas Fiallo Industrial University of Santander
  • Carlos Alberto Ríos Reyes Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.redin.14873

Keywords:

Fe2O3 and MnO2, experimental, sodium hipochloride, removal, clinoptilolite

Abstract

In the present work of investigation the efficiency in the Fe and Mn removal of the natural water is verified ed by the use of adsorbent means that consist of natural zeolite (clinoptilolite), recovered with Fe2O3 and MnO2 starting from FeCl3 and MnSO4, respectively. The zeolite by its great capacity of cation interchange is an excellent support of these oxides. The mechanism of the removal is by adsorption-oxidation of these metals on the surface of the oxide layer that covers the grain with zeolite. In the removal tests by means of a filtration system the variable pH were studied, as well as the Fe and Mn concentrations, flow in the affluent and height of the layer of the zeolite, being the last two being those of more relevance in the removal. Concentrations of 1.0-7.0 mg/L for Fe and 0.5-3.0 mg/L for Mn were used, in a rank of pH of 6.0-8.0. The efficiency of the removal diminishes with the increase in the Fe concentration, especially to high values of pH (> 7.5), by the formation of precipitated of Fe2O3 causing acceleration in the saturation of mean. A significant difference was not obtained both on the removal withthe use of types of covering, although to high concentrations of these metals, with the Fe2O3 layer a little greater percentage of removal were obtained, but the disadvantage is that with this oxide type smaller race of the filters was obtained by the saturation of the means.

|Abstract
= 302 veces | PDF (ESPAÑOL (ESPAÑA))
= 99 veces|

Downloads

Download data is not yet available.

Author Biographies

Carolina Cuchimaque Lugo, Industrial University of Santander

Industrial Consulting Laboratory. School of Chemistry.

Luz Yolanda Vargas Fiallo, Industrial University of Santander

Industrial Consulting Laboratory. School of Chemistry.

Carlos Alberto Ríos Reyes, Industrial University of Santander

School of Geology.

References

S. Sharma, B. Petrusevski, J. Schippers. “Biological iron removal from groundwater: a review”. Journal of Water Supply: Research and Technology - Aqua. Vol. 4. 2005. pp. 239-246. DOI: https://doi.org/10.2166/aqua.2005.0022

Problemas del agua potable: El hierro y el manganeso. Disponible en http://texaswater.tamu.edu/resources/factsheets/l5451sironandman.pdf. Consultado el 8 Agosto 2011.

S. Qina, F. Ma, P. Huang, J. Yang. “Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin”. Desalination. Vol. 245. 2009. pp. 183-193. DOI: https://doi.org/10.1016/j.desal.2008.04.048

A. Ito, T. Umita, J. Aizawa, T. Takachi, K. Morinaga. “Removal of heavy metals from anaerobically digested sewage sludge by a new chemical method using ferric sulfate”. Water Research. Vol. 34. 2000. pp. 751-758. DOI: https://doi.org/10.1016/S0043-1354(99)00215-8

D. Mohan, S. Chander. “Single component and multicomponent adsorption of metal ions by activated carbons”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 177. 2001. pp. 183-196. DOI: https://doi.org/10.1016/S0927-7757(00)00670-1

J. Lakatos, S. Brown, C. Snape. “Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams”. Fuel. Vol. 81. 2002. pp. 691-698. DOI: https://doi.org/10.1016/S0016-2361(01)00159-4

S. Babel, T. Kurniawan. “Low-cost adsorbents for heavy metals uptake from contaminated water: a review”. Journal of Hazardous Materials. Vol. 97. 2003. pp. 219-243. DOI: https://doi.org/10.1016/S0304-3894(02)00263-7

E. Erdem, N. Karapinar, R. Donat. “The removal of heavy metal cations by natural zeolites”. Journal of Colloid and Interface Science. Vol. 280. 2004. pp. 309- 314. DOI: https://doi.org/10.1016/j.jcis.2004.08.028

D. Mohan, C. Pittman. “Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water”. Journal of Hazardous Materials. Vol. 137. 2006. pp. 762-811. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.060

B. Sancey, G. Trunfio, J. Charles, J. Minary, S. Gavoille, P. Badot, G. Crini. “Heavy metal removal from industrial effluents by sorption on cross-linked starch: Chemical study and impact on water-toxicity”. Journal of Environmental Management. Vol. 92. 2011. pp. 765-772. DOI: https://doi.org/10.1016/j.jenvman.2010.10.033

Manganese greensand. Disponible en http://www.inversand.com/maggreen.htm. Consultada el 28 Julio 2011.

H. Gallard, U. Gunten. “Chlorination of natural organic matter: kinetics of chlorination and of THM formation”. Water Research. Vol. 36. 2002. pp. 65-74. DOI: https://doi.org/10.1016/S0043-1354(01)00187-7

E. Sogaard, R. Medenwaldt, J. Abraham-Peskir. “Conditions and rates of biotic and abiotic iron precipitation in selected Danish fresh water plants and microscopic analysis of precipitate morphology”. Water Research. Vol. 10. 2000. pp. 2675-2682. DOI: https://doi.org/10.1016/S0043-1354(00)00002-6

M. Doula. “Removal of Mn2+ ions from drinking water by using clinoptilolite and a clinoptilolite-Fe oxide system”. Water Research. Vol. 40. 2006. pp. 3167- 3176. DOI: https://doi.org/10.1016/j.watres.2006.07.013

M. Doula, A. Ioannou. “The effect of electrolyte anion on Cu adsorption-desorption by Clinoptilolite”. Microporous and Mesoporous Materials. Vol. 58. 2003. pp. 115-130. DOI: https://doi.org/10.1016/S1387-1811(02)00610-8

V. Inglezakis, M. Loizidou, H. Grigoropoulou. “Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite”. Water Research. Vol. 36. 2002. pp. 2784-2792. DOI: https://doi.org/10.1016/S0043-1354(01)00504-8

L. Bosco, R. Jimenez, W. Carvalho. “Removal of toxic metals from wastewater by Brazilian natural scolecite”. Journal of Colloid and Interface Science. Vol. 281. 2005. pp. 424-431. DOI: https://doi.org/10.1016/j.jcis.2004.08.060

J. Patoczka, R. Johnson, J. Scheri. Trace heavy metals removal with ferric chloride. Water Environment Federation, Waste Technical Conference, Nashville. TN. 1998. http://www.patoczka.net/Jurek%20Pages/Papers/Trace%20HeMe%20Removal%20with%20Ferric.pdf. Consultada el 18 Junio 2010.

V. Petkova “Uso de zeolitas naturales en la remoción de Mn”. Ingeniería Hidráulica en México. Vol. 12. 1997. pp. 41-48.

G. Box, W. Hunter, J. Hunter. Estadística para Investigadores. “Diseño, Innovación y Descubrimiento”. Ed. Reverté, México. 2008. pp. 639.

J. Ferré. “El diseño factorial completo 2k”. Técnicas de Laboratorio. Vol. 292. 2004. pp. 430-434.

H. Gutiérrez-Pulido, R. De la Vara-Salazar. Análisis y Diseño de Experimentos. Ed. Mc-Graw Hill. México. 2003. pp. 563.

R. Kuehl. Diseño de Experimentos. Principios Estadísticos para el Diseño y Análisis de Investigadores. Ed. Thomson Learning. México. 2000. pp. 680.

C. Cuchimaque. Remoción de hierro y manganeso en aguas naturales por adsorción -oxidación sobre zeolita natural tipo clinoptilolita. Tesis de pregrado. Universidad Industrial de Santander. Bucaramanga, Colombia. 2006. pp. 63.

B. Jackson, P. Lasier, W. Miller, P. Winger. “Effects of Calcium, Magnesium, and Sodium on Alleviating Cadmium Toxicity to Hyalella Azteca”. Bulletin of Environmental Contamination and Toxicology. Vol. 64. 2000. pp. 279-286. DOI: https://doi.org/10.1007/s001289910041

Published

2013-03-18

How to Cite

Cuchimaque Lugo, C., Vargas Fiallo, L. Y., & Ríos Reyes, C. A. (2013). Fe and Mn retention in natural water by adsorption-oxidation on clinoptilolite. Revista Facultad De Ingeniería Universidad De Antioquia, (66), 24–44. https://doi.org/10.17533/udea.redin.14873