Competitive multi-swarm system in adaptive resource allocation for a multi-process system
DOI:
https://doi.org/10.17533/udea.redin.15233Keywords:
swarm intelligence, multi-processing system, adaptive resource allocation, intelligent controlAbstract
This article presents a new proposal that performs adaptive resource allocation to control a multi-process system using bio-inspired techniques, based specifically on swarm intelligence algorithms (SI). These algorithms solve highly complex problems from simple rules to show adaptive and cooperative characteristics among various individual agents. This leads to observe with expectation the performance in the applicability that these algorithms handle to control complex systems with multiple inputs and multiple outputs. This paper presents a proposal of different swarm models run independently that recreate a competitive system from an operational standpoint, because each model is based only on its own assigned properties. This proposal was studied and analyzed using various performance metrics. All tested algorithms were able to control all assigned processes and especially the ant model showed more stability.
Downloads
References
C. Blum, D. Merkle. Swarm Intelligence Introduction and Applications. Ed. Springer-Verlag. Berlin, Heidelberg, Germany. 2008. pp. 3-41. DOI: https://doi.org/10.1007/978-3-540-74089-6
J. Kennedy, R. Eberhart. Swarm Intelligence. Ed. Academic Press, San Diego, CA, USA. 2001. pp. 288- 308.
K. Passino. Biomimicry for Optimization, Control, and Automation. Ed. Springer-Verlag London Limited. Cap. 1, 5. 2005. pp. 9-92, 764-892.
N. Quijano, B. Andrews, K. Passino. “Foraging Theory for Multizone Temperature Control”. IEEE Computational Intelligence Magazine. Vol. 1. 2006. pp. 18-27. DOI: https://doi.org/10.1109/MCI.2006.329704
W. Alfonso. “Regulación de Temperatura en la Plataforma UV-PTM01 basada en Agentes Cooperativos para la Asignación Dinámica de Recursos”. Tesis de grado. Universidad del Valle. Cali, Colombia. 2007. pp. 144.
N. Karaboga. A New “Design Method Based on Artificial Bee Colony algorithm for Digital IIR Filters”. Journal of the Franklin Institute. Vol. 346. 2009. 328-348. DOI: https://doi.org/10.1016/j.jfranklin.2008.11.003
W. Alfonso, M. Muñoz, J. López, E. Caicedo. “Optimización de Funciones Inspirada en el Comportamiento de Búsqueda de Néctar en Abejas”. Memorias del Congreso Internacional de Inteligencia Computacional (CIIC2007). Bogotá - Colombia. 2007. pp. 1-9.
M. Fleischer. Foundations of Swarm Intelligence: From Principles to Practice. Cornell University Library. Ithaca, NY, USA. 2005. pp. 1-13.
M. Muñoz, J. López, E. Caicedo. “Optimización por Colonia de Hormigas para la Asignación Dinámica de Recursos en una Plataforma de Experimentación de Temperatura Multi-zona”. IEEE Latin American Transactions. Vol. 5. 2007. pp. 82-87.
N. Quijano, K. Passino. “Resource Allocation Strategies For Multizone Temperature Control”. 2nd IFAC Symposium on System, Structure and Control. Oaxaca (México). Diciembre 2004. pp. 1-6.
N. Quijano, A. Gil, K. Passino. Experiments for Distributed and Networked Dynamic Resource Allocation, Scheduling, and Control. Junio 2004. pp. 1-57. http://ece.osu.edu/~passino/CSM03039_Revised.pdf. Fecha de consulta: Diciembre 2009
M. Muñoz. “Asignación Dinámica de Recursos con Técnicas Bio-Inspiradas Para Un Sistema de Control de Temperatura MIMO”. Tesis de grado. Universidad del Valle, Cali, Colombia. 2005. Fecha de consulta: enero 2010. pp. 151. Impreso.
N. Quijano, A. Gil, K. Passino. “Experiments for Dynamic Resource Allocation, Scheduling, and Control”. IEEE Computational Intelligence Magazine. 2004. Vol. 25. pp. 63-79. DOI: https://doi.org/10.1109/MCS.2005.1388804
N. Quijano. “Experiments and Technologies For Decentralized Temperature Control”. Thesis. The Ohio State University. Columbus, Ohio, USA. 2002. Fecha de consulta: Febrero 2010. http://www2.ece.ohiostate.edu/~passino/tesis_final.pdf.
E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence From Natural to Artificial Systems. Ed. Oxford University Press. New York, NY, USA. 1999. Cap. 2, 3. pp. 25-56, 109-144. DOI: https://doi.org/10.1093/oso/9780195131581.001.0001
M. Dorigo, V. Maniezzo, A. Colorni. “The Ant System: Optimization by a Colony of Cooperating Agents”. IEEE Transactions on Systems, Man, and Cybernetics-Part B. 1996. Vol. 26. pp. 1-13. DOI: https://doi.org/10.1109/3477.484436
M. Dorigo, G. Di Caro, L. Gambardella. Ant Algorithms for Discrete Optimization. Artificial Life. Cambridge, MA, USA. 1999. pp. 137-172. DOI: https://doi.org/10.1162/106454699568728
K. Passino. “Bacterial Foraging Optimization. International”. Journal of Swarm Intelligence Research. Vol. 1. 2010. pp. 1-16. DOI: https://doi.org/10.4018/jsir.2010010101
M. Muñoz, J. López, E. Caicedo. “Inteligencia de Enjambres: Sociedades Para la Solución de Problemas (Una Revisión)”. Ingeniería e Investigación. Vol. 28. 2008. pp. 119-130. DOI: https://doi.org/10.15446/ing.investig.v28n2.14901
K. M. Passino. “Biomimicry of Bacterial Foraging for Distributed Optimization and Control”. IEEE Control Systems Magazine. Vol. 22. 2002. pp. 52-67. DOI: https://doi.org/10.1109/MCS.2002.1004010
H. de Vries, J. Biesmeijer. “Modelling Collective Foraging by Means of Individual Behavior Rules in Honey-Bees”. Vol. 44. 1998. pp. 109-124. DOI: https://doi.org/10.1007/s002650050522
M. Muñoz, J. López, E. Caicedo. “An Artificial Bee Hive for Continuous Optimization”. International Journal of Intelligent Systems. Vol. 1. 2008. pp. 1-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.