Ground surface settlement of loose sands densified with explosives
DOI:
https://doi.org/10.17533/udea.redin.16278Keywords:
sands, gassy sands, field performance, settlements, blast densificationAbstract
This paper presents the results of a blast densification program conducted at a sanitary landfill located in South Carolina, U.S., to densify a liquefiable loose sand layer deposit and thus increase its resistance to liquefaction and flow during a seismic event. Five zones were selected for improvement, and a total of four blasting passes were implemented at each zone. Additionally, preblast CPT soundings were performed to determine the location of the loose sand layer, and thus define the distribution of the explosives. Topographic surveys were conducted along the centerline of the long direction to measure the ground surface settlements before and after each blast event. Measurements of ground surface settlements indicated that, regardless of the initial "apparent" decrease in penetration resistance commonly measured by standard verification tests, blast densification is an effective technique to increase the soil density. At the tested zones, the final relative densities varied from 65% to 91%. At these densities, the improved sand layer is not considered susceptible to liquefaction and flow, and a dilative response will be expected during a seismic event.
Downloads
References
S. Ashford, K. Rollins, J. Lane. “Blast-induced liquefaction for full-scale foundation testing.” Journal of Geotechnical and Geoenvironmental Engineering. Vol. 130. 2004. pp. 798-806. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(798)
K. Rollins, J. Anderson. “Cone penetration resistance variation with time after blast liquefaction testing.” D. Zeng, M. Manzari, D. Hiltunen (editors). Geotechnical Earthquake Engineering and Soil Dynamics. Vol. IV GSP 181. Ed. ASCE Labrary. Sacramento, USA. 2008. pp 1-10. DOI: https://doi.org/10.1061/40975(318)103
Z. Solymar. “Compaction of alluvial sands by deep blasting.” Can. Geotech. J. Vol. 21. 1984. pp. 305-321. DOI: https://doi.org/10.1139/t84-032
W. Camp, P. Mayne, K. Rollins. 2008. “Cone penetration testing before, during, and after blast-induced liquefaction.” D. Zeng; M. Manzari, D. Hiltunen (editores). Geotechnical Earthquake Engineering and Soil Dynamics. Vol. IV, GSP 181. Ed. ASCE Labrary. Sacramento. USA. 2008. pp. 1-10.
A. Narsilio, J. Santamarina, T. Hebeler, R.Bachus. “Blast Densification: Multi-Instrumented Case History.” Journal of Geotechnical and Geoenvironmental Engineering. Vol. 135. 2009. pp. 723-734. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000023
G. Thomann, D. Hryciw. 1992. “Stiffness and strength changes in cohesionless soils due to disturbance.” Can. Geotech. J. Vol. 29. pp. 853-861. DOI: https://doi.org/10.1139/t92-092
C. Hall. “Compacting a dam foundation by blasting.” J Soil Mech. and Found. Div. ASCE. Vol. 88. 1962. pp. 33-51. DOI: https://doi.org/10.1061/JSFEAQ.0000430
U. La Fosse. Improvements by Deep Blasting: Marine Corps Reserve Training Center. Westover Air Reserve Base. Company Report, GeoDesign, Inc. Massachusetts, USA. 2002. pp.148.
V. Raju, G. Gudehus. Compaction of loose sand deposits using blasting. Proc. Proceedings, 13rd International Conference on soil mechanics and foundation engineering. New Delhi, India. 1994. pp. 1145-1150.
Z. Solymar, B. Iloabachie, R. Gupta, L. Williams. “Earth foundation treatment at Jebba dam site.” Journal of Geotechnical Engineering. Vol. 110. 1984. pp.1415-1430. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1984)110:10(1415)
A. Wild. “Tower foundations compacted with explosives.” Electr. World. Vol. 66. 1961. pp. 36-38.
W. Gohl, M. Jefferies, J. Howie, D. Diggle. “Explosive compaction: design, implementation and effectiveness.” Geotechnique Vol. 506. 2000. pp. 57-665. DOI: https://doi.org/10.1680/geot.2000.50.6.657
W. Narin Van Court, J. Mitchell. “Soil improvement by blasting Part 1.” Explosives Engineering. Vol. 12. 1994. pp. 34-41.
GeoSyntec Consultants Inc. Ground improvement results of optimized blast densification program. Oakridge Sanitary Landfill, Dorchester, SC, Final Report - Project Number GD3397. Prepared for USA Waste Services, Inc. Atlanta. USA. 2005. pp.75.
F. Kulhawy, P. Mayne. Manual on estimating soil properties for foundation design. Cornell University. Final report. New York, USA. 1990. pp. 291.
R. Bachus, T. Hebeler, J. Santamarina, M. Othman, G. Narsilio. Use of field instrumentation and monitoring to assess ground modification by blast densification. Proceedings, 15th Great Lakes Geotechnical/ Geoenviromental Conference, Applications of geotechnical instrumentation for performance evaluation of constructed facilities. Indianapolis, USA. 2008. pp. 15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.