Aglomeración de micropartículas de látex: simulación y verificación experimental

Authors

  • Flavio Humberto Fernández-Morales Universidad Pedagógica y Tecnológica de Colombia
  • Julio Enrique Duarte Universidad Pedagógica y Tecnológica de Colombia
  • Josep Samitier Martí Universitat de Barcelona

DOI:

https://doi.org/10.17533/udea.redin.16608

Keywords:

dielectrophoresis, microparticle clustering, microsystems, finite element method

Abstract

Manipulation of micrometric objects at the single level is one of the most important research fields because these techniques can be applied to handle biological material. The objective of this paper consists of presenting a microsystem designed for particle microhandling. The operating principle of the device hinges upon dielectrophoresis, which is the lateral motion of electrical neutral matter under the influence of non-uniform electric fields. In practice, the device was made on a silicon substrate onto which interdigitated castellated microelectrodes made of platinum were patterned by lift-off. Moreover, the microchamber walls were patterned in a photocurable resin which allows a constant sample volume during the experiments. Besides this, the chip was tested with polystyrene microspheres of 4.2 µm in diameter and some results of common dielectrophoresis and particle clustering are also presented. Microparticle aggregation patterns are consistent with the electric field profile calculated by the finite element method over the electrode surface.

|Abstract
= 99 veces | PDF (ESPAÑOL (ESPAÑA))
= 36 veces|

Downloads

Download data is not yet available.

Author Biographies

Flavio Humberto Fernández-Morales, Universidad Pedagógica y Tecnológica de Colombia

Grupo de Energía y Aplicación de Nuevas Tecnologías (GEANT)

Julio Enrique Duarte, Universidad Pedagógica y Tecnológica de Colombia

Grupo de Energía y Aplicación de Nuevas Tecnologías (GEANT)

Josep Samitier Martí, Universitat de Barcelona

Departament d’Electrònica

References

W. B. Betts. “The potential of dielectrophoresis for the real-time detection of microorganisms in foods”. Trends in Food Science and Technology. Vol. 6. 1995. pp. 51 - 58. DOI: https://doi.org/10.1016/S0924-2244(00)88943-8

G. Fuhr, G. Shirley. “Biological application of microstructures”. Topics in current chemistry. Vol. 194. 1998. pp. 83 - 116. DOI: https://doi.org/10.1007/3-540-69544-3_4

K. Hoettges, M. Hughes, A. Cotton, N. Hopkins, M. Mcdonell. “Optimizing particle collection for enhanced surface-based biosensors”. IEEE in Medicine and Biology Magazine. Vol. 22. 2003. pp. 68 - 74. DOI: https://doi.org/10.1109/MEMB.2003.1266049

K. Sato, Y. Kawamura, S. Tanaka, K. Uchida, H. Kohida. “Individual and mass operation of biological cells using micromechanical silicon devices”. Sensors and Actuators. Vol. A21-A23. 1990. pp. 948 - 953. DOI: https://doi.org/10.1016/0924-4247(90)87066-R

G. Fuhr, T. Müller, T. Schnelle, R. Hagedorn, A. Voigt, S. Fiedler. “Radio-frequency microtools for particle and living cell manipulation”. Naturwissenschaften. Vol. 81. 1994. pp. 528 - 535. DOI: https://doi.org/10.1007/BF01139998

C. L. Asbury, G. van den Engh. “Trapping of DNA in nonuniform oscillating electric fields”. Biophysical Journal. Vol. 74. 1998. pp. 1024 - 1030. DOI: https://doi.org/10.1016/S0006-3495(98)74027-5

D. Figeys, D. Pinto. “Lab-on-a-chip: A revolution in biological and medical sciences”. Analytical Chemistry. Vol. 72. 2000. pp. 330a-335a. DOI: https://doi.org/10.1021/ac002800y

H. A. Pohl, J. P. Schwar. “Factors affecting separations of suspensions in nonuniform electric fields”. Journal of Applied Physics. Vol. 30. 1959. pp. 69 - 73. DOI: https://doi.org/10.1063/1.1734977

Y. Huang, R. Pethig. “Electrode design for negative dielectrophoresis”. Measurement Science and Technology. Vol. 2. 1991. pp. 1142 - 1146. DOI: https://doi.org/10.1088/0957-0233/2/12/005

H. A. Pohl, J. S. Crane. “Dielectrophoretic force”. Journal of Theoretical Biology. Vol. 37. 1972. pp. 1 - 13. DOI: https://doi.org/10.1016/0022-5193(72)90112-9

P. Kohnke. “ANSYS Theory Reference Manual release 5.5.” Swanson Analysis Systems Inc. 1995. pp. 1 – 120.

H. Krassow. Microsensor packaging for flow measurement with a novel differential pressure meter. PhD. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain. 1999.

A. Ramos, H. Morgan, N. G. Green, A. Castellanos. “Ac electrokinetics: a review of forces in microelectrodes structures”. Journal of Physics D: Applied Physics. Vol. 31. 1998. pp. 2338 – 2353. DOI: https://doi.org/10.1088/0022-3727/31/18/021

O. Velev, E. Kaler. ”In situ assembly of colloidal particles into miniaturized biosensors”. Langmuir. Vol. 15. 1999. pp. 3693-3698. DOI: https://doi.org/10.1021/la981729c

A. Rosenthel, J. Voldman. “Dielectrophoretic traps for single-particle patterning”. Biophysical Journal. Vol. 88. 2005. pp. 2193-2205. DOI: https://doi.org/10.1529/biophysj.104.049684

Published

2013-09-10

How to Cite

Fernández-Morales, F. H., Duarte, J. E., & Martí, J. S. (2013). Aglomeración de micropartículas de látex: simulación y verificación experimental. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 29–38. https://doi.org/10.17533/udea.redin.16608

Most read articles by the same author(s)