k-NN based regression strategy used to estimate the fault distance in radial power systems

Authors

  • Germán Morales-España Universidad Tecnológica de Pereira
  • Juan Mora-Flórez Universidad Tecnológica de Pereira
  • Hermann Vargas-Torres Universidad Tecnológica de Pereira

DOI:

https://doi.org/10.17533/udea.redin.18117

Keywords:

Faults location, k nearest neighbors (k-NN), radial systems, regression

Abstract

A regression strategy based on k nearest neighbors (k-NN) to estimate the fault distance in radial power systems is proposed. This fault location approach uses measurements of the fundamental components of voltage and current measured at the power substation. In addition, the approach is not constrained by the power system modeling and it is easily adaptable to the special characteristics of radial systems. The proposed fault locator is tested in a power distribution system and the obtained mean error is lower than 3%, by considering all fault types, several faulted nodes and fault resistances.

|Abstract
= 171 veces | PDF (ESPAÑOL (ESPAÑA))
= 79 veces|

Downloads

Download data is not yet available.

Author Biographies

Germán Morales-España, Universidad Tecnológica de Pereira

Grupo de Investigación en Sistema de Energía Eléctrica (GISEL) y en Calidad de Energía Eléctrica y Estabilidad (ICE3)

Juan Mora-Flórez, Universidad Tecnológica de Pereira

Grupo de Investigación en Sistema de Energía Eléctrica (GISEL) y en Calidad de Energía Eléctrica y Estabilidad (ICE3)

Hermann Vargas-Torres, Universidad Tecnológica de Pereira

Grupo de Investigación en Sistema de Energía Eléctrica (GISEL) y en Calidad de Energía Eléctrica y Estabilidad (ICE3)

References

IEEE Std 37.114. “IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines”. Power System Relaying Comité. 2004.

Comisión de Regulación de Energía y Gas CREG (CREG 1998-2002). Resoluciones CREG 070 de 1998, CREG 096 de 2000, CREG 084 de 2002, CREG 084. 2002.

J. Mora, G. Carrillo, B. Barrera. “Fault Location in Power Distribution Systems Using a Learning Algo¬rithm for Multivariable Data Analysis”. IEEE Tran¬saction on Power Delivery, Vol. 22. 2007. pp. 1715-1721. DOI: https://doi.org/10.1109/TPWRD.2006.883021

A. Warrington, C. Van. Protective relays. Their theory and practice. Chapman and Hall, London. 1968. pp. 125-146.

K. Srinivasan, A. St-Jacques. “A new fault location al¬gorithm for radial transmission lines with loads” IEEE Transactions on Power Delivery. Vol. 4. 1989. pp. 1676–1682. DOI: https://doi.org/10.1109/61.32658

A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders” IEEE Tran¬sactions on Industry and Applications. Vol. 26. 1993. pp. 1170–1175. DOI: https://doi.org/10.1109/28.259729

J. Zhu, D. Lubkeman, A. Girgis. “Automated fault location and diagnosis on electric power distribution feeders” IEEE Transactions on Power Delivery. Vol. 12. 1997. pp. 801–809. DOI: https://doi.org/10.1109/61.584379

R. Aggarwal, Y. Aslan, A. Johns. “New concept in fault location for overhead distribution systems using superimposed components” IEE Proceedings. Gene¬ration, Transmission and Distribution. Vol. 144. 1997. pp. 309–316. DOI: https://doi.org/10.1049/ip-gtd:19971137

R. Das. Determining the locations of faults in distribu¬tion systems. Ph.D. dissertation, University of Saskat-chewan. Saskatoon, Canadá. 1998. pp. 16-73

D. Novosel, D. Hart, Y.Hu, J. Myllymaki, System for locating faults and estimating fault resistence in dis-tribution networks with tapped loads 1998. US Patent number 5,839,093.

L. Yang. One terminal fault location system that co¬rrects for fault resistance effects 1998. US Patent num¬ber 5,773,980.

M. Saha, E. Rosolowski, Method and device of fault location for distribution networks 2002. US Patent number 6,483,435.

M. Choi, S. Lee, D. Lee, B. Jin. “A new fault location algorithm using direct circuit analysis for distribution systems.” IEEE Transactions on Power Delivery. Vol. 19. 2004. pp. 35–41. DOI: https://doi.org/10.1109/TPWRD.2003.820433

T. Cover, P. Hart. “Nearest neighbor pattern classification”. IEEE Transactions on Information Theory. Vol. 13. 1967. pp. 21-27 DOI: https://doi.org/10.1109/TIT.1967.1053964

D. Aha, D. Kibler, M. Albert. “Instance-based learning algorithms”. Machine Learning. 1991, N.o 6. pp. 37-66 DOI: https://doi.org/10.1007/BF00153759

F. Moreno. Clasificadores eficaces basados en algo¬ritmos rápidos de búsqueda del vecino más cercano. Ph.D. dissertation, Universidad de Alicante. Departamento de lenguajes y sistemas informáticos. 2004. pp. 56-89

G. Morales, A. Gómez. Estudio e implementación de una herramienta basada en Máquinas de Soporte Vectorial aplicada a la localización de fallas en sistemas de distribución. Tesis de grado, Universidad Industrial de Santander, Colombia. 2005.http://tan-gara.uis.edu.co/biblioweb/pags/cat/popup/derautor.jsp?parametros=118738. Consultada Mayo de 2007.

G. Morales, H. Vargas, J. Mora. “Impedance based method to fault location in power distribution, consi¬dering tapped loads and heavy unbalanced systems” Proc. XII encuentro regional Iberoamericano del CI¬GRÉ. Foz de Iguazú. 2007. pp. 52-61

G. Morales, G. Carrillo, J. Mora. “Selección de des¬criptores de tensión para localización de fallas en redes de distribución de energía” Revista Ingeniería. Vol. 11. 2006. pp. 43–50.

J. B. Dagenhart. “The 40- Ground-Fault Phenomenon” IEEE Transactions on Industry Applications. Vol. 36. 2000. pp 30-32. DOI: https://doi.org/10.1109/28.821792

Published

2014-01-16

How to Cite

Morales-España, G., Mora-Flórez, J., & Vargas-Torres, H. (2014). k-NN based regression strategy used to estimate the fault distance in radial power systems. Revista Facultad De Ingeniería Universidad De Antioquia, (45), 100–108. https://doi.org/10.17533/udea.redin.18117