Use of chemical methods to synthesize SnO2 -TiO2 nanopartícles
DOI:
https://doi.org/10.17533/udea.redin.18468Keywords:
Nanoparticles, Pechini, precipitation, synthesis, SnO2 -TiO2Abstract
In this work, chemical routes were used to synthesize SnO2 -TiO2 ceramic powders: precipitation and polymeric precursor (Pechini) methods. The ceramics powders were characterized by Differential thermal and thermal gravimetric analysis (DTA/TGA), Fourier transform infrared spectroscopy (FT-IR), X Ray Diffraction (XRD) and scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized ceramic powders presented nanometric sized and high chemical purity.
Downloads
References
A. Montenegro, M. Ponce, M. Castro, J. E. Rodríguez. “SnO2 –Bi2 O3 and SnO2 –Sb2 O3 gas sensors obtained by soft chemical method”. Journal of the European Ceramic Society. Vol. 27. 2007. pp. 4143-4146. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.106
C. Ararat, J. A. Varela, J. E. Rodríguez. “Uso de métodos químicos para la obtención de polvos cerámicos del sistema (Sn, Ti)O2 “. Bol. Soc. Esp. Ceram. Vol. 44. 2005. pp. 215-222. DOI: https://doi.org/10.3989/cyv.2005.v44.i4.377
K. L. Chopra, S. Major, P. K. Pandya. “Transparent conductors–A status review”. Thin Solid Films. Vol. 102. 1983. pp. 63-66. DOI: https://doi.org/10.1016/0040-6090(83)90256-0
K. Chatterjee, S. Chatterjee, A. Banerjee, M. Raut, N. Pal, H.S. Maiti. “The effect of palladium incorporation on methane sensitivity of antimony doped Tin”. Mater. Chem. & Phys. Vol. 81. 2003. pp. 33-38. DOI: https://doi.org/10.1016/S0254-0584(03)00145-7
V. Marques. “Influência do óxido de cromo nas propriedades varistoras do óxido de estanho”. Tesis de Maestría. Instituto de química de Araraquara. 2003. UNESP.
J. G. Fagan; V. R. Amarakon. “Realiability and reproducibility of ceramic sensors-III”. Ceram. Soc. Bull. Vol. 72. 1993. pp. 119-129.
J. M. Jarzebski, J. P Marton. “Physical properties of SnO2 materials-II “. Electrochem. Vol. 129. 1976. pp. 299-310. DOI: https://doi.org/10.1149/1.2133090
N. Sergent, P. Gélin, L. Périer- Camby, H. Praliaud, G. Thomas. “Preparation and characterization of high surface area stannic oxides: structural textural and semiconducting propierties”. Sensors and actuactors B. Vol. 84. 2002. pp. 176-188. DOI: https://doi.org/10.1016/S0925-4005(02)00022-9
M. Ristic, M. Ivanda, S. Popovic, S. Music. “Dependence of nanocrystalline SnO2 particle size on synthesis route”. J. Non- Cryst. Solids. Vol. 303. 2002. pp. 270- 280. DOI: https://doi.org/10.1016/S0022-3093(02)00944-4
C. J. Brinker , G. W. Scherer. “Sol-gel Science: The physics and chemistry of sol-gel processing”. Academic Press. San Diego. C.A. 1990. pp. 21-95.
J. P. Jolivet. Metal Oxide Chemistry and synthesis: from solution to solid State. Wiley-VCH, Weinheim. 2000. pp. 53-140.
S. de Monredon, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneaw, L. Delattre. “Synthesis and characterization of crystalline tin oxide nanoparticles”. J. Mater. Chem. Vol. 12. 2002. pp. 2396-2400. DOI: https://doi.org/10.1039/b203049g
K. Ch. Song, Y. Kang. “Preparation of high surface area tin oxide powders by a homogeneous precipitation method”. Materials letters. Vol. 42. 2000. pp. 283- 289. DOI: https://doi.org/10.1016/S0167-577X(99)00199-8
C. Ararat, A. Mosquera, M. S. Castro, R. Parra, J. E. Rodríguez “Synthesis of SnO2 nanoparticles through the controlled precipitation route”. Materials Chemistry and Physics. Vol. 101. 2007. pp. 433-440. DOI: https://doi.org/10.1016/j.matchemphys.2006.08.003
A. Montenegro, M. Ponce, M. S. Castro, J. E. Rodríguez. “Nanopartículas de SnO2 obtenidas por el método de precipitación controlada”. Revista Latinoamericana de Metalurgia y materiales. Vol. 26. 2006. pp. 51-60.
A. Montenegro, M. Ponce, M. Castro, J. E. Rodríguez. “Uso de métodos químicos para la obtención de sensores de gas del sistema Sn-Sb” Dyna. Vol. 74. 2007. pp. 97-105.
E. R. Leite, J. W. Gomes, M. M. Oliveira, E. J. H. Lee, E. Longo, J. A. Varela, C. A. Paskocimas, T. M. Boschi, F. Lanciotti, P. S. Pisan, P. C. Soares. “Synthesis of SnO2 nanoribbons by a carbothermal reduction process” J. Nanosci. Nanotechn. Vol. 2. 2002. pp. 125- 128. DOI: https://doi.org/10.1166/jnn.2002.094
F. Torres. “Películas delgadas basadas en TiO2 y MOx / TiO2 con aplicaciones fotoelectroquímicas y ópticas “ Tesis doctoral, Instituto de ciencia de materiales de Sevilla, 2005.
E. Longo, C. O. Paiva-Santos. “Sintering and mass transport features of (Sn,Ti)O2 polycristalline ceramics” Journal of the European Ceramic Society. Vol. 23. 2003. pp. 887-896.
W. Gopel, K. D. Shierbaum. “Current status and the future prospects” Sens. Actuators. Vol. 26-27. 1995. pp. 1-12. DOI: https://doi.org/10.1016/0925-4005(94)01546-T
M. Park, T. E. Mitchell, A. H. Heuer. “Subsolidus equilibra in the TiO2 -SnO2 system” J. Am. Ceram. Soc. Vol. 58. 1975. pp. 43-47. DOI: https://doi.org/10.1111/j.1151-2916.1975.tb18980.x
T. Yamamoto, H. Shiumizu. “Some considerations on stability of electrical resistance of the TiO2 /SnO2 ceramic Moisture sensor”. IEEE transactions on components, hybrids and manufacturing technology. Vol. 5. 1985. pp. 238-241. DOI: https://doi.org/10.1109/TCHMT.1982.1135964
W. J. Moon, J. H. Yu. “Selective Gas detection of SnO2 -TiO2 Gas sensors” J. Electroceramics. Vol. 13. 2004. pp. 707-713. DOI: https://doi.org/10.1007/s10832-004-5180-1
S. Arakawa, K. Mogi, K. Kikuta, T. Yogo. “Gas-sensing properties of spinodally decomposed (Ti, Sn)O2 thin films” J. Am. Ceram. Soc. Vol. 82. 1999. pp. 225-228. DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01749.x
P. R. Bueno, M. R. Cassia-Santos, E. R. Leite. “Lowvoltage varistor based on (Sn,Ti)O2 ceramics” J. Eur. Ceram. Soc., Vol. 23. 2002. pp. 887-896. DOI: https://doi.org/10.1016/S0955-2219(02)00234-0
C. Ararat, J. A. Varela, J. E. Rodríguez. “Efecto del método de síntesis sobre la sinterabilidad de los polvos cerámicos de (Sn,Ti)O2 “. Rev. Acad. Colomb. Cienc. Vol. 29. 2005. pp. 271- 281. DOI: https://doi.org/10.18257/raccefyn.29(111).2005.2161
A. A. Mosquera, J. A. Varela, J. E. Rodríguez. “Síntesis de nanopartículas de SnO2 y su uso en la conformación de varistores “. Rev. Fac. Ing. Univ. Antioquia Vol. 39. 2007. pp. 33 - 41.
W. Chaisan, R. Yimmirun, S. Ananta, D. P. Cann, “The effects of the spinoidal microstructure on the electrical properties of TiO2 - SnO2 ceramics”. J. Sol. State Chem. Vol. 178. 2005. pp. 613– 620. DOI: https://doi.org/10.1016/j.jssc.2004.11.030
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.