Hydration process in ordinary portland cement paste with thermally treated kaolin

Authors

  • Janneth Torres Universidad Nacional de Colombia
  • Ruby Mejía de Gutiérrez Universidad del Valle
  • Ricardo Castelló Centro de Ciencias Medioambientales
  • Carmen Vizcayno Centro de Ciencias Medioambientales

DOI:

https://doi.org/10.17533/udea.redin.18630

Keywords:

blended cement, kaolin, metakaolin, hydration products, thermal treatment

Abstract

The results obtained in an experimental study that analyzed the hydration process of ordinary Portland cement (OPC) paste with 20% addition of thermally treated kaolin (TTK) are presented. The kaolin was thermally treated between 500 and 900°C. Resulting pastes were analyzed by x-ray diffraction (XRD), differential thermogravimetry (DTG) and scanning electronic microscopy (SEM). After 60 curing days the main phases present in the TTK-cement system were the CSH gel, Gehlenite Hydrated Amorphous (C2 ASH8 ) and Portlandite (CH). The kaolin treatment temperature affects the hydrated system phase composition.

|Abstract
= 137 veces | PDF (ESPAÑOL (ESPAÑA))
= 82 veces|

Downloads

Download data is not yet available.

Author Biographies

Janneth Torres, Universidad Nacional de Colombia

Departamento de Ingeniería Civil y Agrícola

Ruby Mejía de Gutiérrez, Universidad del Valle

Escuela de Ingeniería de Materiales

References

A. K. Shvarzman, K. Kovler, G. S. Grader, G. E. Shter. “The effect of dehydroxilation/amorphization degree on pozzolanic activity of kaolinite”. Cem. Concr. Res. Vol. 33. 2003. pp. 405-416. DOI: https://doi.org/10.1016/S0008-8846(02)00975-4

H. Rahier, B. Wullaert, B. Van Mele. “Influence of the degree of dehydroxilation of Kaolinite on the properties of aluminosilicate glasses”. J. Therm. Anal. Calorim. Vol. 62. 2000. pp. 417-427. DOI: https://doi.org/10.1023/A:1010138130395

R. M. de Gutiérrez, J. Torres, C. E. Guerrero. “Análisis del proceso térmico de producción de una puzolana”. Materiales de Construcción. Vol. 54. 2004. pp. 65-72. DOI: https://doi.org/10.3989/mc.2004.v54.i274.233

J. Torres, R. M. de Gutiérrez, F. Puertas. “Efecto de la temperatura de tratamiento de un caolín en la permeabilidad a cloruros de morteros adicionados”. Materiales de Construcción. Vol. 57. 2007. pp. 61-69. DOI: https://doi.org/10.3989/mc.2007.v57.i285.39

R. M. de Gutiérrez, J. Torres, C. Vizcayno, R. Castello. “Influence of the calcination temperature of kaolin on the mechanical properties of blended mortars and concretes”. Clay Minerals, en prensa.

G. Batis, P. Pantazopoulou, S. Tsivilis, E. Badogiannis. “The effect of metakaolin on the corrosion behaviour of cement mortars”. Cement and Concrete Composites. Vol. 27. 2005. pp. 125-130. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.041

L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre. “Durability of mortars modified with metakaolins”. Cem. and Concr. Res. Vol. 33. 2003. pp. 1473-1479. DOI: https://doi.org/10.1016/S0008-8846(03)00090-5

M. Frías, J. Cabrera. “Pore size distribution and degree of hydration of metakaolin-cement pastes”. Cem. and Concr. Res. Vol. 30. 2000. pp. 561-569. DOI: https://doi.org/10.1016/S0008-8846(00)00203-9

R. M. de Gutiérrez, S. Delvasto, R. Talero. “Una nueva puzolana para materiales cementicios de elevadas prestaciones”. Materiales de Construcción. Vol. 50. 2000. pp. 5-12. DOI: https://doi.org/10.3989/mc.2000.v50.i260.386

C. Poon, S. Azhar S., M. Anson, Y. Wong. “Performance of metakaolin concrete at elevated temperatures”. Cem. Concr. Compos. Vol. 25. 2003. pp. 83-89. DOI: https://doi.org/10.1016/S0958-9465(01)00061-0

H. A. Razak, H. S. Wong. “Strength estimation model for high-strength concrete incorporating metakaolin and silica fume”. Cem. and Concr. Res. Vol. 35. 2005. pp. 688-695. DOI: https://doi.org/10.1016/j.cemconres.2004.05.040

A. Boddy, R. D. Hooton, K. A. Gruber. “Long-Term Testing of the Chloride-penetration Resistance of Concrete Containing High-Reactivity Metakaolin”. Cem. and Concr. Res. Vol. 31. 2001. pp. 759-765. DOI: https://doi.org/10.1016/S0008-8846(01)00492-6

A. H. Asbridge, G. A. Chadbourn, C. L. Page. “Effects of Metakaolin and the Interfacial Zone on the Diffusion on chloride ions through Cement Mortars”. Cem. and Concr. Res. Vol. 31. 2001. pp. 1567-1572. DOI: https://doi.org/10.1016/S0008-8846(01)00598-1

P. S. De Silva, F. P. Glasser. “Hydration of cements based on Metakaolin”. Therm. Adv. Cem. Res. Vol. 3. 1990. pp. 167-177. DOI: https://doi.org/10.1680/adcr.1990.3.12.167

F. Massazza. “Pozzolanic cements”, Cem. Concr. Composites. Vol. 15. 1993. pp. 185-214. DOI: https://doi.org/10.1016/0958-9465(93)90023-3

M. Frias, J. Cabrera. “Influence of MK on the Reaction Kinetics in MK/lime and Mk-blended cement systems at 20ºC”. Cem. Concr. Res. Vol. 31. 2001. pp. 519-527. DOI: https://doi.org/10.1016/S0008-8846(00)00465-8

M. Murat. “Hydration reaction and hardening of calcined clays and related minerals. I. Preliminary investigation on metakaolinite”. Cem. and Concr. Res. Vol. 13. 1983. pp. 259-266. DOI: https://doi.org/10.1016/0008-8846(83)90109-6

P. S. De Silva, F. P. Glasser. “Phase relations in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin- calcium hydroxide hydration”. Cem. and Concr. Res. Vol. 23. 1993. pp. 627-639. DOI: https://doi.org/10.1016/0008-8846(93)90014-Z

M. Frias, M. I. Sanchez de Rojas. “The effect of high curing temperature on the reaction kinetics in MK/lime and MK/blended cement matrices at 60ºC”. Cem. and Concr. Res. Vol. 33. 2003. pp. 643-649. DOI: https://doi.org/10.1016/S0008-8846(02)01040-2

J. A. Bain. “Mineralogical assessment of raw material for burnt clay pozzolanas”, Lime and Alternative Cements, London, Crowthorne : TRRL. 1974. pp. 60-73.

J. A. Forrester, Burnt clay pozzolanas, Lime and Alternative Cements, London, Crowthorne : TRRL. 1974. pp. 53-59.

A. K. Shvarzman, K. Kovler, G. S. Grader, G. E. Shter. “Hydration of portlandite-metakaolin and Portland cement-metakaolin systems”. Proc 11th International Congress on the Chemistry of Cement (ICCC). South Africa. 2003.

M. Oriol, J. Pera. “Pozzolanic activity of metakaolin under microwave treatment”. Cem. Concr. Res. Vol. 25. 1995. pp. 265-270. DOI: https://doi.org/10.1016/0008-8846(95)00007-0

M. Murat. “Hydration reaction and hardening of calcined clays and related minerals. II. Influence of mineralogical properties of the Raw-Kaolinite on the reactivity of metakaolinite”. Cem. Concr. Res. Vol. 13. 1983. pp. 511-518. DOI: https://doi.org/10.1016/0008-8846(83)90010-8

J. I. Bhatty. “A review of the application of thermal analysis to cement-admixture systems”. Thermochimica Acta. Vol. 189. 1991. pp. 313-350. DOI: https://doi.org/10.1016/0040-6031(91)87128-J

J. P. Goncalves. “Avaliação da hidratação de pastas de cimento Portland com metacaulinita por emio de analise térmica”. Anais Conferencia Brasileira de Materiais e Tecnologias Nao-Convencionais. NOCMAT. Brasil. 2004. pp. 242-251.

S. Diamond. “The microstructure of cement paste an concrete- a visual primer” Cem. Concr. Compos. Vol. 26. 2004. pp. 919-933. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.028

J. I. Escalante-Garcia. J.H. Sharp. “The Chemical composition and microstructure of hydration products in blended cements”. Cem. Concr. Compos. Vol. 26. 2004. pp. 967-976. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.036

K. Scrivener. “Backscattered Electron Imaging of Cementitious Microstructures: Understanding and Quantification”. Cem. Concr. Compos. Vol. 26. 2004. pp. 935-945. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.029

Published

2014-02-25

How to Cite

Torres, J., Mejía de Gutiérrez, R., Castelló, R., & Vizcayno, C. (2014). Hydration process in ordinary portland cement paste with thermally treated kaolin. Revista Facultad De Ingeniería Universidad De Antioquia, (43), 77–85. https://doi.org/10.17533/udea.redin.18630