A fault location method applied in power distribution systems based on k-NN classifiers parameterized using genetic algorithms and the reactance estimation

Authors

  • Andrés Zapata-Tapasco Technological University of Pereira
  • Sandra Pérez-Londoño Technological University of Pereira
  • Juan Mora-Flórez Technological University of Pereira

DOI:

https://doi.org/10.17533/udea.redin.18667

Keywords:

fault impedance, fault location, knearest neighbors, power distribution systems, hybrid

Abstract

In  this  paper,  a  parameterization  strategy  of  a  k  nearest  neighbors  (k-NN) based  fault  locator  is  described.  This  technique  is  complemented  by  a  well  validated location method based on the estimation of the fault impedance. This hybrid strategy is validated in a real power distribution feeder, having obtained acceptable results. Finally and as an important advantage of the here proponed  methodology,  it  is  remarkable  the  easy  implementation  process,  considering real distribution feeders (more than 100 nodes).

|Abstract
= 177 veces | PDF (ESPAÑOL (ESPAÑA))
= 65 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrés Zapata-Tapasco, Technological University of Pereira

Research Group on Electric Power Quality and Stability (ICE).

Sandra Pérez-Londoño, Technological University of Pereira

Research Group on Electric Power Quality and Stability (ICE).

Juan Mora-Flórez, Technological University of Pereira

Research Group on Electric Power Quality and Stability (ICE).

References

T. Short. “Electric Power Distribution Handbook”. CRC press. Vol. 1. 2003. pp. 8-30 DOI: https://doi.org/10.1201/9780203486504

IEEE Std 37.114. “IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines”. Power System Relaying Committee. Vol. 2004. pp. 1-36.

J. Mora. Localización de Fallas en Sistemas de Distribución de Energía Eléctrica usando Métodos Basados en el Modelo y Métodos Basados en el Conocimiento. Tesis Doctoral. University of Girona. Girona, España. 2006. pp. 21-86.

R. Das. Determining the locations of faults in distribution systems. Ph. D. dissertation. University of Saskatchewan. Saskatoon, Canada. 1998. pp 41-64.

A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders” IEEE Transactions on Industry and Applications. Vol. 26. 1993. pp. 1170-1175. DOI: https://doi.org/10.1109/28.259729

K. Srinivasan, A. St-Jacques. “A new fault location algorithm for radial transmission lines with loads”. IEEE Transactions on Power Delivery. Vol. 4. 1989. pp. 1676-1682. DOI: https://doi.org/10.1109/61.32658

J. Mora, G. Morales, S. Pérez. “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power Systems”. IET Generation, Transmission & Distribution. 2009. Vol. 3. pp. 346-356. DOI: https://doi.org/10.1049/iet-gtd.2008.0164

R. Mahanty, P. Gupta. “Application of RBF neural network to fault classification and location in transmission lines”. IEE Proceedings Generation, Transmission and Distribution. Vol. 151. 2004. pp. 201-212. DOI: https://doi.org/10.1049/ip-gtd:20040098

D. Thukaram, H. Khincha, H. Vijaynarasimha. “Artificial Neural Network and Support Vector Machine Approach for Locating Faults in Radial Distribution Systems”. IEEE Transactions on Power Delivery. Vol. 20. 2005. pp. 710-721. DOI: https://doi.org/10.1109/TPWRD.2005.844307

A. Moujahid, I. Inza, P. Larrañaga. Clasificadores knn. Departamento de Ciencias de la Computación e Inteligencia Artificial. Universidad del País VascoEuscal Herriko Unibertsitatea. Disponible en: http:// www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/t9knn. pdf. Consultado: Julio 2012.

S. Sivanandam, S. Deepa. Introduction to Genetic Algorithms. 1st ed. Ed. Springer Verlag. Heidelberg, Germany. 2003. pp 19-78.

P. Mitra, C. Murthy, S. Pal. “Data condensation in large databases by incremental learning with support vector machines”. A. Sanfeliu, J. Villanueva, M. Vanrell, R. Alquezar, A. Jain, J. Kittler (editors). Proc. 15th Int. Conf. on Pattern Recognition. Vol. 2. 2000. pp. 708- 711.

G. Morales, J. Mora, H. Vargas. “Método de localización de fallas en sistemas de distribución basado en gráficas de reactancia”. Revista Scientia et técnica. Vol. 34. 2007. pp. 49-54.

J. Mora, J. Bedoya, J. Meléndez. “Implementación de protecciones y simulación automática de eventos para localización de fallas en sistemas de distribución de energía”. Ingeniería y competitividad. Vol. 8. 2006. pp. 5-14. DOI: https://doi.org/10.25100/iyc.v8i1.2507

V. Kecman. Learning and soft computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. 1a ed. Ed. The M.I.T. Press. Cambridge, London. 2001. pp. 27-29.

B. Wang, Y. Zeng, Y. Yang. Generalized nearest neighbor rule for pattern classification. Proceedings of the 7th Congress on Intelligent Control and Automation. Chongqing, China. 2008. DOI: https://doi.org/10.1109/WCICA.2008.4594258

J. Dagenhart. “The 40-Ground-Fault Phenomenon”. IEEE Transactions on Industry Applications. Vol. 36. 2000. pp 30-32. DOI: https://doi.org/10.1109/28.821792

Published

2014-02-27

How to Cite

Zapata-Tapasco, A. ., Pérez-Londoño, S., & Mora-Flórez, J. (2014). A fault location method applied in power distribution systems based on k-NN classifiers parameterized using genetic algorithms and the reactance estimation. Revista Facultad De Ingeniería Universidad De Antioquia, (70), 220–232. https://doi.org/10.17533/udea.redin.18667