A fault location method applied in power distribution systems based on k-NN classifiers parameterized using genetic algorithms and the reactance estimation
DOI:
https://doi.org/10.17533/udea.redin.18667Keywords:
fault impedance, fault location, knearest neighbors, power distribution systems, hybridAbstract
In this paper, a parameterization strategy of a k nearest neighbors (k-NN) based fault locator is described. This technique is complemented by a well validated location method based on the estimation of the fault impedance. This hybrid strategy is validated in a real power distribution feeder, having obtained acceptable results. Finally and as an important advantage of the here proponed methodology, it is remarkable the easy implementation process, considering real distribution feeders (more than 100 nodes).
Downloads
References
T. Short. “Electric Power Distribution Handbook”. CRC press. Vol. 1. 2003. pp. 8-30 DOI: https://doi.org/10.1201/9780203486504
IEEE Std 37.114. “IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines”. Power System Relaying Committee. Vol. 2004. pp. 1-36.
J. Mora. Localización de Fallas en Sistemas de Distribución de Energía Eléctrica usando Métodos Basados en el Modelo y Métodos Basados en el Conocimiento. Tesis Doctoral. University of Girona. Girona, España. 2006. pp. 21-86.
R. Das. Determining the locations of faults in distribution systems. Ph. D. dissertation. University of Saskatchewan. Saskatoon, Canada. 1998. pp 41-64.
A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders” IEEE Transactions on Industry and Applications. Vol. 26. 1993. pp. 1170-1175. DOI: https://doi.org/10.1109/28.259729
K. Srinivasan, A. St-Jacques. “A new fault location algorithm for radial transmission lines with loads”. IEEE Transactions on Power Delivery. Vol. 4. 1989. pp. 1676-1682. DOI: https://doi.org/10.1109/61.32658
J. Mora, G. Morales, S. Pérez. “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power Systems”. IET Generation, Transmission & Distribution. 2009. Vol. 3. pp. 346-356. DOI: https://doi.org/10.1049/iet-gtd.2008.0164
R. Mahanty, P. Gupta. “Application of RBF neural network to fault classification and location in transmission lines”. IEE Proceedings Generation, Transmission and Distribution. Vol. 151. 2004. pp. 201-212. DOI: https://doi.org/10.1049/ip-gtd:20040098
D. Thukaram, H. Khincha, H. Vijaynarasimha. “Artificial Neural Network and Support Vector Machine Approach for Locating Faults in Radial Distribution Systems”. IEEE Transactions on Power Delivery. Vol. 20. 2005. pp. 710-721. DOI: https://doi.org/10.1109/TPWRD.2005.844307
A. Moujahid, I. Inza, P. Larrañaga. Clasificadores knn. Departamento de Ciencias de la Computación e Inteligencia Artificial. Universidad del País VascoEuscal Herriko Unibertsitatea. Disponible en: http:// www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/t9knn. pdf. Consultado: Julio 2012.
S. Sivanandam, S. Deepa. Introduction to Genetic Algorithms. 1st ed. Ed. Springer Verlag. Heidelberg, Germany. 2003. pp 19-78.
P. Mitra, C. Murthy, S. Pal. “Data condensation in large databases by incremental learning with support vector machines”. A. Sanfeliu, J. Villanueva, M. Vanrell, R. Alquezar, A. Jain, J. Kittler (editors). Proc. 15th Int. Conf. on Pattern Recognition. Vol. 2. 2000. pp. 708- 711.
G. Morales, J. Mora, H. Vargas. “Método de localización de fallas en sistemas de distribución basado en gráficas de reactancia”. Revista Scientia et técnica. Vol. 34. 2007. pp. 49-54.
J. Mora, J. Bedoya, J. Meléndez. “Implementación de protecciones y simulación automática de eventos para localización de fallas en sistemas de distribución de energía”. Ingeniería y competitividad. Vol. 8. 2006. pp. 5-14. DOI: https://doi.org/10.25100/iyc.v8i1.2507
V. Kecman. Learning and soft computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. 1a ed. Ed. The M.I.T. Press. Cambridge, London. 2001. pp. 27-29.
B. Wang, Y. Zeng, Y. Yang. Generalized nearest neighbor rule for pattern classification. Proceedings of the 7th Congress on Intelligent Control and Automation. Chongqing, China. 2008. DOI: https://doi.org/10.1109/WCICA.2008.4594258
J. Dagenhart. “The 40-Ground-Fault Phenomenon”. IEEE Transactions on Industry Applications. Vol. 36. 2000. pp 30-32. DOI: https://doi.org/10.1109/28.821792
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.