Implication of the inferior vena cava in the generation of reentry in the pectinate muscles

Authors

DOI:

https://doi.org/10.17533/udea.redin.n75a03

Keywords:

inferior vena cava, anisotropic, atrial arrhythmia, reentry, pectinate muscles

Abstract

Atrial  fibrillation  (AF)  is  the  most  common  cardiac  arrhythmia  and  its  prevalence increases with age. The most dangerous and complex arrhythmias  are the result of a phenomenon known as reentry. In experimental studies,  the vena cava has been associated with ectopic activity that promotes the  generation of reentries. The changes caused by electrical remodeling in an  atrial myocyte action potential model (AP), coupled with an anatomically  realistic three-dimensional model of human atria with orientation fibers were  incorporated in this work. When applying an ectopic focus to the nearby  ostium of the inferior vena cava, a relationship between this activity and the  generation of reentries in the pectinate muscles is found. A functional reentry  repeated in time is favored by the pectinate muscles anatomy, the anisotropic  properties and the non-uniform distribution in the three-dimensional tissue.  The existence of a preferential conduction pathway facilitates the initiation  of  reentries  affecting  the  conduction  scheme.  Therefore,  the  capacity  of  induction and development of arrhythmias are found.

|Abstract
= 254 veces | PDF
= 199 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrés Paolo Castaño-Vélez, University of Caldas

Center for Research, Innovation, Development and Technology Transfer (CI2DT2), Faculty of Engineering. Research Professor, Department of Systems and Informatics.

Carlos Alberto Ruiz-Villa, University of Caldas

Center for Research, Innovation, Development and Technology Transfer (CI2DT2), Faculty of Engineering. Research Professor, Department of Systems and Informatics.

Andrés Castillo-Sanz, Pontifical University of Salamanca

Professor of the Department of Language Engineering, Computer Systems and Software.

References

Y. Rudy. "From Genetics to Cellular Function Using Computational Biology." Ann N Y Acad Sci 1015 (2004): 261-70.

R. H. Clayton, A. V. Holden. "Propagation of Normal Beats and Re-Entry in a Computational Model of Ventricular Cardiac Tissue with Regional Differences in Action Potential Shape and Duration." Prog Biophys Mol Biol 85, no. 2-3 (2004): 473-99.

E Foster, RA Gray, J Jalife. "Role of the Pectinate Muscle Structure in Atrial Fibrillation: A Computer Study." Pacing Clin Electrophysiol 20 (1997): 1134.

T. J. Wu, M. Yashima, F. Xie, C. A. Athill, Y. H. Kim, M. C. Fishbein, Z. Qu, A. Garfinkel, J. N. Weiss, H. S. Karagueuzian, P. S. Chen. "Role of Pectinate Muscle Bundles in the Generation and Maintenance of Intra-Atrial Reentry: Potential Implications for the Mechanism of Conversion between Atrial Fibrillation and Atrial Flutter." Circ Res 83, no. 4 (1998): 448-62.

R. A. Gray, A. M. Pertsov, J. Jalife. "Incomplete Reentry and Epicardial Breakthrough Patterns During Atrial Fibrillation in the Sheep Heart." Circulation 94, no. 10 (1996): 2649-61.

M. Courtemanche, R. J. Ramirez, S. Nattel. "Ionic Mechanisms Underlying Human Atrial Action Potential Properties: Insights from a Mathematical Model." Am J Physiol 275, no. 1 Pt 2 (1998): H301-21.

M. Courtemanche, R. J. Ramirez, S. Nattel. "Ionic Targets for Drug Therapy and Atrial Fibrillation-Induced Electrical Remodeling: Insights from a Mathematical Model." Cardiovasc Res 42, no. 2 (1999): 477-89.

Y. Gong, F. Xie, K. M. Stein, A. Garfinkel, C. A. Culianu, B. B. Lerman, D. J. Christini. "Mechanism Underlying Initiation of Paroxysmal Atrial Flutter/Atrial Fibrillation by Ectopic Foci: A Simulation Study." Circulation 115, no. 16 (2007): 2094-102.

S. Koumi, C. L. Backer, C. E. Arentzen. "Characterization of Inwardly Rectifying K+ Channel in Human Cardiac Myocytes. Alterations in Channel Behavior in Myocytes Isolated from Patients with Idiopathic Dilated Cardiomyopathy." Circulation 92, no. 2 (1995): 164-74.

R. F. Bosch, X. Zeng, J. B. Grammer, K. Popovic, C. Mewis, V. Kuhlkamp. "Ionic Mechanisms of Electrical Remodeling in Human Atrial Fibrillation." Cardiovasc Res 44, no. 1 (1999): 121-31.

G. Seemann, P. C. Bustamante, S. Ponto, M. Wilhelms, E. P. Scholz, Do, x, O. ssel. "Atrial Fibrillation-Based Electrical Remodeling in a Computer Model of the Human Atrium." Paper presented at the Computing in Cardiology, 2010, 26-29 Sept. 2010 2010.

D. Harrild, C. Henriquez. "A Computer Model of Normal Conduction in the Human Atria." Circ Res 87, no. 7 (2000): E25-36.

S. Y. Ho, D. Sanchez-Quintana, J. A. Cabrera, R. H. Anderson. "Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation." J Cardiovasc Electrophysiol 10, no. 11 (1999): 1525-33.

S. Y. Ho, R. H. Anderson, D. Sanchez-Quintana. "Atrial Structure and Fibres: Morphologic Bases of Atrial Conduction." Cardiovasc Res 54, no. 2 (2002): 325-36.

Carlos Alberto Ruiz-Villa. "Estudio De La Vulnerabilidad a Reentradas a Través De Modelos Matemáticos Y Simulación De La Aurícula Humana." Doctoral Thesis, Universitat Politecnica de Valencia, 2011.

K. Shinagawa, H. Mitamura, A. Takeshita, T. Sato, H. Kanki, S. Takatsuki, S. Ogawa. "Determination of Refractory Periods and Conduction Velocity During Atrial Fibrillation Using Atrial Capture in Dogs: Direct Assessment of the Wavelength and Its Modulation by a Sodium Channel Blocker, Pilsicainide." J Am Coll Cardiol 35, no. 1 (2000): 246-53.

A. Hassankhani, B. Yao, G. K. Feld. "Conduction Velocity around the Tricuspid Valve Annulus During Type 1 Atrial Flutter: Defining the Location of Areas of Slow Conduction by Three-Dimensional Electroanatomical Mapping." J Interv Card Electrophysiol 8, no. 2 (2003): 121-7.

A. G. Kleber, Y. Rudy. "Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias." Physiol Rev 84, no. 2 (2004): 431-88.

V. Jacquemet, N. Virag, Z. Ihara, L. Dang, O. Blanc, S. Zozor, J. M. Vesin, L. Kappenberger, C. Henriquez. "Study of Unipolar Electrogram Morphology in a Computer Model of Atrial Fibrillation." J Cardiovasc Electrophysiol 14, no. 10 Suppl (2003): S172-9.

E. A. Heidenreich, J. M. Ferrero, M. Doblare, J. F. Rodriguez. "Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology." Ann Biomed Eng 38, no. 7 (2010): 2331-45.

C. Cabo, A. M. Pertsov, W. T. Baxter, J. M. Davidenko, R. A. Gray, J. Jalife. "Wave-Front Curvature as a Cause of Slow Conduction and Block in Isolated Cardiac Muscle." Circ Res 75, no. 6 (1994): 1014-28.

V. G. Fast, A. G. Kleber. "Role of Wavefront Curvature in Propagation of Cardiac Impulse." Cardiovasc Res 33, no. 2 (1997): 258-71.

O. Berenfeld, A. V. Zaitsev, S. F. Mironov, A. M. Pertsov, J. Jalife. "Frequency-Dependent Breakdown of Wave Propagation into Fibrillatory Conduction across the Pectinate Muscle Network in the Isolated Sheep Right Atrium." Circ Res 90, no. 11 (2002): 1173-80.

A. V. Panfilov. "Spiral Breakup as a Model of Ventricular Fibrillation." Chaos 8, no. 1 (1998): 57-64.

APOSTOLOS G Katsivas, Athanasios G Manolis, Charalambos Vassilopoulos, P Ioanidis, Athina Giotopoulou, Zenon Kyriakides. "Electroanatomical Mapping of a Right Atrial Tachycardia Originating within the Inferior Vena Cava." Hellenic Journal of Cardiology 45 (2004): 187-90.

M. Warren, P. K. Guha, O. Berenfeld, A. Zaitsev, J. M. Anumonwo, A. S. Dhamoon, S. Bagwe, S. M. Taffet, J. Jalife. "Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart." J Cardiovasc Electrophysiol 14, no. 6 (2003): 621-31.

S. Nattel, A. Maguy, S. Le Bouter, Y. H. Yeh. "Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation." Physiol Rev 87, no. 2 (2007): 425-56.

Downloads

Published

2015-05-15

How to Cite

Castaño-Vélez, A. P., Ruiz-Villa, C. A., & Castillo-Sanz, A. (2015). Implication of the inferior vena cava in the generation of reentry in the pectinate muscles. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 15–23. https://doi.org/10.17533/udea.redin.n75a03