Fuzzy logic controller for cooperative mobile robotics implemented in leader-follower formation approach
DOI:
https://doi.org/10.17533/udea.redin.n76a03Keywords:
cooperative robotics, mobile robotics, fuzzy logic control, leader-follower, control systemsAbstract
This paper presents the design of a fuzzy logic cooperative control by implementing the leader-follower approach that allows establishing and maintaining a specific geometric formation to a mobile robot group while they are moving along a predefined trajectory. As a result of the research, it was proved by simulation a cooperative control system that permits a set of robots to keep a specific formation while the group performs a predetermined mission. This control system helps to avoid obstacles by modifying the formation or by changing the leader inside the group.
Downloads
References
K. Ng, M. Trivedi. Multirobot convoying using neuro- fuzzy control. Proceedings of the 13th International Conference on Pattern Recognition. Vol. 4. Vienna, Austria. 1996. pp. 417-421.
P. Varaiya. “Smart cars on smart roads: problems of control”. IEEE Transactions on Automatic Control. Vol. 38. 1993. pp. 195-207.
M. Sisto, D. Gu. A fuzzy leader-follower approach to formation control of multiple mobile robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. 2006. pp. 2515- 2520.
I. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, S. Burion. “Human-robot teaming for search and rescue”. IEEE Pervasive Computing. Vol. 4. 2005. pp. 72- 78.
M. Ghiasvand, K. Alipour. Formation control of wheeled mobile robots based on fuzzy logic and system dynamics. Proceedings of the 13th Iranian Conference on Fuzzy Systems (IFSC). Qazvin, Iran. 2013. pp. 1-6.
B. Young, R. Beard, J. Kelsey. A control scheme for improving multi-vehicle formation maneuvers. Proceedings of the American Control Conference. Vol. 2. Arlington, USA. 2001. pp. 704-709.
P. Tabuada, G. Pappas, P. Lima. Feasible formations of multi-agent systems. Proceedings of the American Control Conference. Vol. 1. Arlington, USA. 2001. pp. 56-61.
M. Amoozgar, K. Alipour, S. Sadati, M. Dehsara. Position control of multiple wheeled mobile robots using fuzzy logic. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Montreal, Canada. 2010. pp. 587-592.
P. Song, A coordination framework for weakly centralized mobile robot teams. Proceedings of the IEEE International Conference on Information and Automation (ICIA). Harbin, China. 2010. pp. 77-82.
H. Mehrjerdi. “Hierarchical fuzzy cooperative control and path following for a team of mobile robots”. IEEE/ ASME Transactions on Mechatronics. Vol. 16. 2011. pp. 907-917.
X. Li, “Robot formation control in leader-follower motion using direct Lyapunov method”. International Journal of Intelligent Control and Systems. Vol. 10. 2005. pp. 244-250.
A. Brandao, M. Sarcinelli, R. Carelli, T. Bastos. Decentralized control of leader-follower formations of mobile robots with obstacle avoidance. Proceedings of the IEEE International Conference on Mechatronics (ICM). Malaga, Spain. 2009. pp. 1-6.
A. Saffiotti. “The uses of fuzzy logic in autonomous robot navigation”. Soft Computing. Vol. 1. 1997. pp. 180- 197.
M. Molina, N. Velasco, L. Solaque, A. Riveros. Decentralized cooperative control technique for non- holonomic mobile formation. Proceedings of the III International Congress of Engineering Mechatronics and Automation (CIIMA). Cartagena, Colombia. 2014. pp. 1-5
J. Veerman, G. Lafferriere, J. Caughman, A. Williams. “Decentralized control of vehicle formations”. Systems & Control Letters. Vol. 54. 2005. pp. 899-910.
J. Veerman, G. Lafferriere, J.S. Caughman, A. Williams. “Flocks and formations”. Journal of Statistical Physics. Vol. 121. 2005. pp. 901-936.
F. Bravo, D. Patino, K. Melo, C. Parra. Switching control and modeling of mobile robots formation. Proceedings of the IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications (LARC) Robotics Symposium. Bogotá, Colombia. 2011. pp. 1-6.
K. Mathia, G. Lafferriere, T. Titensor. Cooperative control of UAV platoons – a prototype. Proceedings of the Euro UAV Conference and Exhibition. Paris, France. 2007. pp. 1-12.
A. Williams, G. Lafferriere, J. Veerman. Stable motions of vehicle formations. Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference (CDC-ECC). Seville, Spain. 2005. pp. 72-77.
J. Fax, R. Murray. “Information flow and cooperative control of vehicle formations”. IEEE Transactions on Automatic Control. Vol. 49. 2004. pp. 1465-1476.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.