The impact of using a proton exchange membrane on alkaline fuel cell performance
DOI:
https://doi.org/10.17533/udea.redin.n77a16Keywords:
Nafion 117, degree of conversion, production of hydrogen, mass transfer coefficientAbstract
A hydrogen fuel cell was designed in the laboratory, operating in potentiostatic mode (1 V, 1.23 V, 1.5 V and 5 V), obtaining characteristic parameters that allow improving hydrogen production by means of electrolysis. For this, a proton exchange membrane, Nafi on 117, was adapted, which was subjected to an activation pretreatment, allowing us to compare its performance and function. Values for current density, degree of conversion, mass transfer coeffi cient and hydrogen fl ow generated in an instant (t) were obtained.
Downloads
References
D. Kurniawan, H. Arai, S. Morita and K. Kitagawa, “Chemical degradation of Nafi on ionomer at a catalyst interface of polymer electrolyte fuel cell by hydrogen and oxygen feeding in the anode”, Microchemical Journal, vol. 106, pp. 384-388, 2013.
M. Montoya and H. Reyes, “Optimización de una celda combustible de hidrógeno”, Scientia et Technica, vol. 18, no. 1, pp. 200-205, 2013.
H. Li, Y. Lee, J. Lai and Y. Liu, “Composite membranes of Nafi on and poly(styrene sulfonic acid)-grafted poly(vinylidene fl uoride) electrospun nanofi ber mats for fuel cells”, Journal of Membrane Science, vol. 466, pp. 238-245, 2014.
B. Wu et al., “The degradation study of Nafi on/ PTFE composite membrane in PEM fuel cell under accelerated stress tests”, International Journal of Hydrogen Energy, vol. 39, no. 26, pp. 14381-14390, 2014.
D. Kurniawan, S. Morita and K. Kitagawa, “Durability of Nafi on-hydrophilic silica hybrid membrane against trace radial species in polymer electrolyte fuel cells”, Microchemical Journal, vol. 108, pp. 60-63, 2013.
T. Yu et al., “The effect of different environments on Nafi on degradation: Quantum mechanics study”, Journal of Membrane Science, vol. 437, pp. 276-285, 2013.
R. Nogueira, A. Oliveira and M. Linardi, “Infl uence of the relative volumes between catalyst and Nafi on ionomer in the catalyst layer effi ciency”, International Journal of Hydrogen Energy, vol. 39, no. 27, pp. 14680- 14689, 2014.
S. Kreitmeier, G. Schuler, A. Wokaun and F. Büchi, “Investigation of membrane degradation in polymer electrolyte fuel cells using local gas permeation analysis”, Journal of Power Sources, vol. 212, pp. 139- 147, 2012.
T. Husaini, M. Herianto, Y. Zahira and W. Wan, “PTFENafi on membrane reactor for hydrogen production”, International Journal of Hydrogen Energy, vol. 38, no. 22, pp. 9553-9561, 2013.
M. Umeda, K. Sayama, T. Maruta and M. Inoue, “Proton activity of Nafi on 117 membrane measured from potential difference of hydrogen electrodes”, Ionics, vol. 19, no. 4, pp. 623-627, 2013.
B. Ramos, J. Sole, A. Hernandez and M. Ellis, “Experimental characterization of the water transport properties of PEM fuel cells diffusion media”, Journal of Power Sources, vol. 218, pp. 221-232, 2012.
N. Yousfi et al., “A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization”, Journal of Power Sources, vol. 183, no. 1, pp. 260-274, 2008.
Y. Luo, K. Jiao and B. Jia, “Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell”, International Journal of Heat and Mass Transfer, vol. 77, pp. 489-500, 2014.
O. Sharaf and M. Orhan, “An overview of fuel cell technology: fundamentals and applications”, Energy Reviews vol. 32. pp. 810-853, 2014.
K. Polychronopoulou, C. Kalamaras and A. Efstathiou, “Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water–gas shift reactions”, Recent Pat. Mater. Sci., vol. 4, no. 2. pp. 1-24, 2011.
S. Ramos, “Electrodos de tecnología avanzada para sistemas de conversión de energía”, Ph.D. dissertation, National University of La Plata, La Plata, Argentina, 2013.
C. Heitner, “Recent advances in perfluorinated ionomer membranes: structure, properties and applications”, J. Membr. Sci., vol. 120, no. 1, pp. 1-33, 1996.
K. Kreuer, “On the development of proton conducting materials for technological applications”, Solid State Ionics, vol. 97, no. 1-4, pp. 1-15, 1997.
J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. New York, USA: John Wiley & Sons, 2003.
A. Mayandía, “Descripción y Modelado de una Pila de Combustible de Membrana de Intercambio Protónico”, thesis, Charles III University of Madrid, Madrid, Spain, 2009.
H. Reyes and V. Pérez, “Aplicación de la química industrial en reactores electroquímicos de compartimentos separados”, Entre Ciencia e Ingeniería, vol. 8, pp. 29-36, 2011.
J. Hinatsu, M. Mizuhata and H. Takenaka, “Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor”, Journal of Electrochemical Society, vol. 141, no. 6, pp. 1493-1498, 1994.
S. Chen, K. Xu and P. Dong, “Preparation of threedimensionally ordered inorganic/organic bi-continuous composite proton conducting membranes”, Chem. Materials, vol. 17, no. 24, pp. 5880-5883, 2005.
F. Acuña and V. Muñoz, “Celdas de combustible. Una alternativa amigable con el medio ambiente para la generación de potencia y su impacto con el desarrollo sostenible en Colombia en el siglo XXI”, Ingeniería y Desarrollo, no. 10, pp. 94-104, 2001.
U. Lucía, “Overview on fuel cells”, Renewable and Sustainable Energy Reviews, vol. 30. pp. 164-169, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter