Power deposition influence on the electrical and optical properties of Sn1-xO2Nbx thin films obtained by sputtering

Authors

DOI:

https://doi.org/10.17533/udea.redin.n80a16

Keywords:

magnetron sputtering, thin film, transparent conductors

Abstract

In a solid, the electrical conductivity and optical transparency seem to be two  contradictory physical properties. Conductive materials are opaque, and transparent solids  are electrical insulators. Combinations of these two physical properties in a material make  it appropriate for application in many optoelectronic devices. The coincidence of these two  properties  has  been  mainly  ascribed  to  point  defects  in  the  crystal  lattice.  In  this  work,   we  performed  structural,  electrical  and  optical  characterization  of  thin  films  of  one  of  the   most  promising  transparent  conductive  oxides  Sn 1-x O 2 Nb x .  The  films  were  grown  on  glass   substrates  by  RF  magnetron  sputtering  technique.  As  the  deposition  power  was  varied,   it  was  found  that  the  electrical  conductivity  of  the  films  increased  with  increasing  power   deposition, and they showed a preferential growth in the (200) direction. All films exhibited  optical transmittance in the visible range larger than 80%.

|Abstract
= 294 veces | PDF
= 72 veces|

Downloads

Download data is not yet available.

Author Biographies

José Ignacio Uribe-Alzate, University of Antioquia

PhD student. Solid State Group, Institute of Physics.

Franklin Jaramillo-Isaza, University of Antioquia

Professor. Solid State Group, Institute of Physics.

Jaime Alberto Osorio Velez, University of Antioquia

Professor. Institute of Physics, Solid State Group.

Juan Esteban Calle-Montoya, University of Antioquia

PhD student. Center for Research, Innovation and Development of Materials (CIDEMAT), Faculty of Engineering.

References

C. Kılıc and A. Zunger, “Origins of Coexistence of Conductivity and Transparency in SnO 2 ”, Phys. Rev. Lett ., vol. 88, no. 9, pp. 1-4, 2002.

A. Singh, A. Janotti, M. Scheffler and C. Van de Walle, “Sources of Electrical Conductivity in SnO 2 ”, Phys. Rev. Lett ., vol. 101, no. 5, pp. 1-4, 2008.

W. Ke et al ., “Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells”, J. Am. Chem. Soc ., vol. 137, no. 21, pp. 6730-6733, 2015.

J. Ni, X. Zhao and J. Zhao, “Structural, Electrical and Optical Properties of p-Type Transparent Conducting SnO 2 :Zn Film”, J. Inorg. Organomet. Polym. Mater ., vol. 22, no. 1, pp. 21-26, 2011.

P. Bueno, J. Varela and E. Longo, “SnO 2 , ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature”, J. Eur. Ceram. Soc. , vol. 28, no. 3, pp. 505-529, 2008.

O. Vigil, D. Jiménez, G. Contreras and M. Courel, “SnO 2 buffer layer deposition for thin film solar cells with superstrate configuration”, J. Renew. Sustain. Energy ., vol. 7, 2015.

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications”, Thin Solid Films , vol. 516, no. 7, pp. 1314-1321, 2008.

T. Minami and T. Miyata, “Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films”, Thin Solid Films , vol. 517, no. 4, pp. 1474-1477, 2008.

S. Pianaro, P. Bueno, P. Olivi, E. Longo and J. Varela, “Effect of Bi 2 O 3 addition on the microstructure and electrical properties of the SnO 2 ·CoO·Nb 2 O 5 varistor system”, J . Mater. Sci. Lett ., vol. 16, no. 8, pp. 634-638, 1997.

British Geological Survey, Risk list 2015 . [Online]. Available: http://www.bgs.ac.uk/mineralsuk/statistics/risklist.html. Accessed on: Nov. 23, 2015.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide”, Prog. Surf. Sci ., vol. 79, no. 2-4, pp. 47-154, 2005. 12.

P. Smith, Chemistry of tin , 2 nd ed. UK: Blackie Academic & Professional, 1998.

N. Greenwood and A. Earnshaw, Chemestry of the Elements , 2 nd ed. UK: Elsevier, 1997.

D. Barthelmy, Mineral of the Month Club . [Online]. Available: http://webmineral.com/data/Cassiterite.shtml%20. Accessed on: Jun. 01, 2015.

J. Wang, Y. Wang, W. Su, H. Chen and W. Wang, “Novel (Zn , Nb)-doped SnO 2 varistors”, Mater. Sci. Eng. B ., vol. 96, no. 1, pp. 8-13, 2002.

H. Wang et al ., “Fluorinated Eu-Doped SnO 2 Nanostructures with Simultaneous Phase and Shape Control and Improved Photoluminescence”, Part. Part. Syst. Charact ., vol. 30, no. 4, pp. 332-337, 2013.

T. Sabergharesou, T. Wang, L. Ju and P. Radovanovic, “Electronic structure and magnetic properties of sub-3 nm diameter Mn-doped SnO 2 nanocrystals and nanowires”, Appl. Phys. Lett ., vol. 103, no. 1, 2013.

P. Borges, L. Scolfaro, H. Alves, E. Silva and L. Assali, “Study of the oxygen vacancy influence on magnetic properties of Fe- and Co-doped SnO 2 diluted alloys”, Nanoscale Res. Lett ., vol. 7, no. 1, pp. 540, 2012.

J. Osorio, S. Lany and A. Zunger, “Atomic Control of Conductivity Versus Ferromagnetism in Wide-Gap Oxides Via Selective Doping: V, Nb, Ta in Anatase TiO 2 ”, Phys. Rev. Lett ., vol. 100, no. 3, 2008.

A. Yadav et al ., “Electrical, structural and optical properties of SnO 2 :F thin films: Effect of the substrate temperature”, J. Alloys Compd ., vol. 488, no. 1, pp. 350- 355, 2009.

G. Turgut et al ., “An investigation of the Nb doping effect on structural, morphological, electrical and optical properties of spray deposited F doped SnO 2 films”, Physica Scripta , vol. 87, no. 3, 2013.

S. Chacko, N. Philip, K. Gopchandran, P. Koshy and V. Vaidyan, “Nanostructural and surface morphological evolution of chemically sprayed SnO 2 thin films”, Appl. Surf. Sci ., vol. 254, no. 7, pp. 2179-2186, 2008.

V. Gokulakrishnan, S. Parthiban, K. Jeganathan and K. Ramamurthi, “Investigations on the structural, optical and electrical properties of Nb-doped SnO 2 thin films”, J. Mater. Sci ., vol. 46, pp. 5553-5558, 2011.

M. Pechini, “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor”, U.S. Patent 3330697, Jul. 11, 1967.

RRUFF, Cassiterite R040017 . [Online]. Available: http://rruff.info/cassiterite/display=default/R040017. Accessed on: Oct. 12, 2015.

R. Kasar, N. Deshpande, Y. Gudage, J. Vyas and R. Sharma, “Studies and correlation among the structural, optical and electrical parameters of spray- deposited tin oxide (SnO 2 ) thin films with different substrate temperatures”, Phys. B Condens. Matter ., vol. 403, no. 19-20, pp. 3724-3729, 2008.

I. Horcas et al ., “WSXM: a software for scanning probe microscopy and a tool for nanotechnology”, Rev. Sci. Instrum ., vol. 78, no. 1, 2007.

C. Aldao, D. Mirabella, M. Ponce, A. Giberti and C. Malagù, “Role of intragrain oxygen diffusion in polycrystalline tin oxide conductivity”, J. Appl. Phys ., vol. 109, 2011.

M. Ponce, M. Castro and C. Aldao, “Influence of oxygen adsorption and diffusion on the overlapping of intergranular potential barriers in SnO 2 thick films”, Mater. Sci. Eng. B ., vol. 111, no. 1, pp. 14-19, 2004.

K. Wasa, M. Kitabatake and H. Adachi, Thin Film Materials Technology . USA: Springer, 2004.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon”, J. Phps. E Sci. Instrum ., vol. 16, no. 12, 1983.

J. Xu, H. Wang, M. Jiang and X. Liu, “Properties of Nb- doped ZnO transparent conductive thin films deposited by rf magnetron sputtering using a high quality ceramic target”, Bull. Mater. Sci ., vol. 33, no. 2, pp. 119- 122, 2010.

S. Goldsmith, E. Çetinörgü and R. Boxman, “Modeling the optical properties of tin oxide thin films”, Thin Solid Films , vol. 517, no. 17, pp. 5146-5150, 2009

Downloads

Published

2016-09-15

How to Cite

Uribe-Alzate, J. I., Jaramillo-Isaza, F., Osorio Velez, J. A., & Calle-Montoya, J. E. (2016). Power deposition influence on the electrical and optical properties of Sn1-xO2Nbx thin films obtained by sputtering. Revista Facultad De Ingeniería Universidad De Antioquia, (80), 152–158. https://doi.org/10.17533/udea.redin.n80a16