Método para construir redes bayesianas
DOI:
https://doi.org/10.17533/udea.redin.325835Abstract
En el presente trabajo se modelan las relaciones probabilísticas usando las redes bayesianas. La bibliografía consultada muestra que la tendencia actual de las investigaciones en esta técnica se orienta a utilizarlas unidas a otras disciplinas y que también es importante la forma en que se modela una red bayesiana. Se propone un método que utiliza la técnica de segmentación estadística, implementada en el paquete de programas CHAID (Chi-Squared Automatic lnteraction Detector) y métodos estadísticos incorporados al SPSS (Statictical Package for Social Science) para obtener modelos de redes bayesianas. Se aplicó el método a un problema de epidemiología para caracterizar los distintos factores de la cardiopatía izquémica, específicamente el infarto de miocardio agudo (IMA). Tambien se aplicó para determinar la influencia de distintas alteraciones orofaciales en la aparición de la retignosis pigmentaria. El método que se propone permite que los expertos en el tema participen en la elección de la mejor topología para la red bayesiana, entre varias alternativas. Para realizar la inferencia en estas redes, se implementó una primera versión del algoritmo de propagación en redes con una estructura de poliárbol.Downloads
References
[AHA96] AHA DAVID W., CHANG LI WU. "Cooperative Bayesian and Cased-Based Reasoning for Solving Multiagent Planning Taskes", Novy Center for Applied Research AI, Enero, 1996.
[AND89] ANDERSEN. S.K. OLESEN. K.G .. JENSEN. F.V., AND JEUMEN, F. HUGIN-a Shell for bilding Bayesian belief universes for expert systems. In proceeding of the eleventh lnternational Joint Conference on Al, Vol. 2, pages 1080-1085, detroit Michigan. Margan Kaufman, 1989.
[BRE92] BREESE JHON S., "Construction of belief and Decision networks". Computational lntelligence. Vol. 8. No. 4, 1992. DOI: https://doi.org/10.1111/j.1467-8640.1992.tb00382.x
[BRE95] BREESE JHON S.. HECKERMAN D. "Decision-Theoretic Case-Based Reasoning". IEEE. Vol. 26. No. 6. Nov. 1995. DOI: https://doi.org/10.1109/3468.541343
[BUC84] BUCHANAN B. G .. SHORTLIFFE E. H. Rule Based Expert Systems: Thc MYCIN Experiments of the Stanfurd Heuristic Programming Projet. Adison-Wesley. Reading. MA. 1984
[CAS89] CASTILLO ENRIQUE. ÁLVAREZ E. "Sistemas Expertos, Aprendizaje e Incertidumbre". 1994.
[CAS96] CASTILLO ENRIQUE. GUTIÉRREZ J. MANUEL. HADI ALI S. "Expert Systems and Probabilistics Network Models", 1996. DOI: https://doi.org/10.1007/978-1-4612-2270-5
[CHA94] "CHAID para SPSS sobre Windows. Técnicas de segmentación basadas en razones de verosimilitud Chicuadrado", Manual de usuario, SPSS Soft. lnc. 1994.
[DUD80] DUDA R. O., HART P.E. Model Design in the PROSPECTOR Consultant System for Mineral Exploration. In Michie, D .. editor, Expert System in the Microelectronic Age. Edinburgh University Press, 153-167. 1980
[ETX98] ETXEBERRIA. R .. LARRANAGA P .. PICAZA J. M. "Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data". Pattem Recognition Len. Vol. 18. 11-13.1998. DOI: https://doi.org/10.1016/S0167-8655(97)00106-2
[EWA91] EDWARDS JOHN S. "Building Knowledge-Base Systems". 1991.
[FRE87] FREZNEL LOUIS E. "Crash Course in Artificial Intelligence and Expert System". Indianapolis. IN: Howard W. Sams, 1987.
[FER93] FERTING K. W., BREESE J. S. "Probability lntervals Over lnfluence Diagrams". IEEE Vol. 15. No. 3, Marzo 1993. DOI: https://doi.org/10.1109/34.204910
[FUN95] FUNG ROBERT, DEL FA VERO B. "Applying Bayesian Networks to Information Retrieval", ACM. Vol. 38. No. 3. Marzo 1995. DOI: https://doi.org/10.1145/203330.203340
[GAR90] GARCÍA LUCIANO. ''Probabilidad e Inteligencia Artificial".
[HEC91] HECKERMAN DAVID. Probabilislic Similarity Networks. MIT Prcss, Cabridge, Massachusctts, 1991.
[HEC95] HECKERMAN DAVID. BREESE J., ROMNELSE K. "Decision Theoretic : Troubleshootin". ACM. Vol. 38. No. 3. Marzo 1995. DOI: https://doi.org/10.1145/203330.203341
[JEN90] JENSEN, F.Y., LAURITZEN, S.L., AND OLESEN, K.G. Bayesian updating in causal probabilistic networks by local computations. Computational Statistics Quartely, 1990.
[JOB92] JOBSON. J. D. "Applied Multivariate Data Analysis". Vol. 11: Categorical and Multivariate Methods. Springer. New York. 1 1-54. 1992. DOI: https://doi.org/10.1007/978-1-4612-0921-8_1
[KIM83] KIM, J.H. CONVINCE: A conversational lnference Consolidation Engine. PhD Thesis Deparment of Computer Science, University of California at Los Angeles, 1983.
[LAM98] LAM W. "Bayesian network refinement via machine leaming approach". IEEE Trans Pan Anal Mach lnt. Vol. 20, No. 3, 240-251. 1998. DOI: https://doi.org/10.1109/34.667882
[MAR98] MARDIA K.V .. BACZKOWSKJ A.J .. FENG X., Hainsworth T.J. "Statistical methods for automatic interpretation or digitally sacanned finger prints". Panem Recognition Lett. Vol. 18. 11-13.1998. DOI: https://doi.org/10.1016/S0167-8655(97)00103-7
[MYL93] MYLLIMAKI P., TIRRI H. "Massively parallel case-based reasoning with probabilistic similarity metrics ". Proceedings of the First European Workshop on Case-Based Reasoning. 145-154, 1993. DOI: https://doi.org/10.1007/3-540-58330-0_83
[PEA88] PEARL J. "Probabilistic Reasoning in lntelligent System". San Mateo. CA: Morgan Kaufman. 1988.
[REG93] REGAZZONI C.S .. MURINO V .. VERNAZZA G. "Distributed propagation of a priori constraints in Bayesian Network of Markov random fields". IEEE Vol. 40. No. 1. Febrero 1993. DOI: https://doi.org/10.1049/ip-i-2.1993.0008
[SHO86] SHORTLIFFE, E. H. Computer-Based Medical Consultarions: MYCIN. Elsevier North-Holland, amsterdam, London, New York, 1986.
[SMY98] SMYTH P. "Belief networks, hidden Markovs models. and Markov random fields: A unifying view". Pattem Recognition Leu. Vol. 18, 11-13.1998. DOI: https://doi.org/10.1016/S0167-8655(97)01050-7
[SPI86] SPIGELHALTER, D., DAVID,P., LAURJTZEN, S., AND COWEEL, R. Bayesian analysis in expert systems. Statistical Science, 1993.
[STU96] STUART RUSELL. NAVING P. "Inteligencia Artificial: Un enfoque Moderno". 1996.
[WIL98] WILLIAMS W. L., WILSON. R. C.. HANCOCKE. R. "Multiple graph matching with Bayesian inference". Pattem Recognition Lell. Vol 38, 11-13, 1998. DOI: https://doi.org/10.1016/S0167-8655(97)00117-7
[ZAM97] ZAMORA L .. "Tesis de Maestria". 1997.
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.