Biosorption of Fe, Al and Mn of acid drainage from coal mine using brown seaweed sargassum sp. in continuous process

Authors

  • Andrea Díaz Universidad Industrial de Santander
  • John Arias Universidad Industrial de Santander
  • Genaro Gelves Universidad Industrial de Santander
  • Alfonso Maldonado Universidad Industrial de Santander
  • Dionisio Laverde Universidad Industrial de Santander
  • Julio Pedraza Universidad Industrial de Santander
  • Humberto Escalante Universidad Industrial de Santander

DOI:

https://doi.org/10.17533/udea.redin.327309

Keywords:

Acid mine drainage (AMD), metal uptake, Fe, Mn, Al, brown seaweed, sargassum sp., continuous biosorption system

Abstract

The acid mine drainage (AMD) are leaches as result of a coal minning running, it have low pH and high concentrations of heavy metals that convert them in strong polluter; with the purpose of reduce its concentration, a continuous biosorption system was designed by removing heavy metals from drainages using a cheap biosorbent material. The brown seaweed was pre-treatment with solutions 0,1 N of NaOH, Ca(OH)2, NaCl, CaCl2, Na2SO4 y H2SO4 for to study the effect on biosorption process; the removal percentage were determined, which are better than 80% with the exception of pre-treatment with H2SO4 who cancel the algae sorption capacity. The seaweed was packed in plastic mesh and polyester tulle in the shape of a rectangular prism; there isn’t effect on the biosorption process by using this packets. The continuous biosorption process was studied in two units of operation: a packed-bed flow-through sorption column and an horizontal vessel like a canal with baffles, which treated adequately 3,5 and 4,7 l of AMD respectively, using in each one of them 100 g of algae. The burning of algae was studied like an alternative for the problem of handling of residual algae. The ashes kept the metals removed from AMD, furthermore keep stable too by the attack of solutions of different pH.

|Abstract
= 217 veces | PDF
= 275 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrea Díaz, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

John Arias, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

Genaro Gelves, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

Alfonso Maldonado, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

Dionisio Laverde, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

Julio Pedraza, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

Humberto Escalante, Universidad Industrial de Santander

Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente.

References

Murcia, Emma y Claudia Trillos. Estudio cinético para la predicción de la formación de drenajes ácidos en minas de carbón. Universidad Industrial de Santander. Escuela de Ingeniería Química. Bucaramanga, 2000. pp. 5-20.

Duarte, Leusmary y Raquel Villafrades. Remoción de Fe y Mn provenientes de drenajes ácidos de minas de carbón utilizando algas y plantas acuáticas. Universidad Industrial de Santander. Escuela de Ingeniería Química. Bucaramanga, 2001. pp. 74-76.

Laverde, Dionisio et al. Prevención por drenajes ácidos de minas de carbón. Informe final presentado a Colciencias-Minercol. Bucaramanga, 2001. pp. 18-28.

Hedin, R. S. et al. Passive treatment of coal mine drainaje. United States Departament of interior. Bureau of Mines. 1993.

Clayton, L. y T. Wildeman. Processes contributing to the removalremoval of manganese from mine drainage by an algal mixture. National Meeting of the American Society for Surface Mining and Reclamation. Saint Louis, Missouri. Mayo, 1998. pp. 17-22. DOI: https://doi.org/10.21000/JASMR98010192

Volesky, Bohumil. Biosorption of heavy metals. Editorial CRC Press. Boca Raton, 1990. pp. 173-194.

Falbo, M. B. y T. A. Weaks. “Comparison of eichornia crassipes (pontederiaceae) and sphagnnum quinquefarium (sphagnadaceae) in treatment of acid mine water”. En: Economic-Botany. Vol. 44. No. 1. 1990. pp. 40-49. DOI: https://doi.org/10.1007/BF02861065

Hargreaves, Robert et al. Removing heavy metals from liquid effluents using biomasses. Workshop. CANMET/CETEM. Rio de Janeiro, 1997. pp. 1-12.

Kratochvil, David y Bohumil Volesky. “Biosorption of Cu from ferruginous wastewater by algal biomass”. En: Wat. Res. Vol. 32. No. 9. Gran Bretaña, 1998. pp. 2.760-2.768. DOI: https://doi.org/10.1016/S0043-1354(98)00015-3

Volesky, B. e I. Prasetyo. “Cadmium removal a biosorption column”. En: Biotechnology and Bioengineering, Vol. 43. John Wiley & Sons Inc. 1994. pp. 1.010-1.015. DOI: https://doi.org/10.1002/bit.260431103

Adam, K. et al. “A review of passive systems for the treatment of acid mine drainage”. En: Mineral Engineering. Vol. 9. No. 1. pp. 23-42. DOI: https://doi.org/10.1016/0892-6875(95)00129-8

Da Costa, Antonio et al. Batch and continuous heavy metals biosorption by a brown seaweed. Tecnología Ambiental, Serie 12. MCT, CETEM, CNPQ. Rio de Janeiro, 1996.

Orozco, A. Control de contaminación del agua en la pequeña minería subterránea del carbón. Informe final presentado a Ecocarbón. Bogotá, Agosto de 1995.

García, Sandra e Higuera, Óscar. Reducción del cromo contenido en efluentes líquidos de la industria del cuero, mediante un proceso adsorción-desorción con algas marinas. Universidad Industrial de Santander. Escuela de Ingeniería Metalúrgica. Bucaramanga, 2000. pp. 68-69.

Gusek, J. J. Passive treatment of acid rock drainage What is the potential bottom line? Minino Engineering. Marzo, 1995. pp. 250-253.

Downloads

Published

2003-03-06

How to Cite

Díaz, A., Arias, J., Gelves, G., Maldonado, A., Laverde, D., Pedraza, J., & Escalante, H. (2003). Biosorption of Fe, Al and Mn of acid drainage from coal mine using brown seaweed sargassum sp. in continuous process. Revista Facultad De Ingeniería Universidad De Antioquia, (30), 34–48. https://doi.org/10.17533/udea.redin.327309