Solvent and ligand effects on α-pinene epoxidation with Methyltrioxorhenium/hydrogen peroxide system (MTO/H2 O2 )

Authors

  • Lina María Gonazález R. Universidad de Antioquia
  • Aída Luz Villa de P. Universidad de Antioquia
  • Georges Gelbard Instituto de Investigación en Catálisis
  • Consuelo Montes de Correa Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.327311

Keywords:

α-pinene epoxidation, methyltrioxorhenium, hydrogen peroxide, basic ligands, solvent effect, pyridine, N-oxides

Abstract

Several ligands were studied as co-catalysts for α-pinene epoxidation with MTO/H2O2. Pyridine is an efficient co-catalyst with dichlorometane, tetrahydrofuran or ethyl acetate. However, large amounts of pyridine are required. In contrast, with relatively small amounts of the Aromox surfactant, high activity and selectivity to α-pinene epoxide are obtained. The latter system has the additional advantage of requiring no chlorinated solvents which are environmentally less friendly.

|Abstract
= 124 veces | PDF
= 53 veces|

Downloads

Download data is not yet available.

Author Biographies

Lina María Gonazález R., Universidad de Antioquia

Grupo Catálisis Ambiental. Facultad de Ingeniería

Aída Luz Villa de P., Universidad de Antioquia

Grupo Catálisis Ambiental. Facultad de Ingeniería

Consuelo Montes de Correa, Universidad de Antioquia

Grupo Catálisis Ambiental. Facultad de Ingeniería.

References

Hölderich, W. F. et al. “Synthesis of intermediate and fine chemicals on heterogeneous catalysis with respect to environmental protection”. En: Catal. Today. Vol. 38. 1997. p. 227. DOI: https://doi.org/10.1016/S0920-5861(97)00071-0

Derfer, J. M. et al. Encyclopedia of Chemical Technology Kirk-Othmer. Vol. 22. New York. Wiley. 1978. p. 709.

Sienel, G. et al. Ullmann’s Encyclopedia of Industrial Chemistry. Vol. A9. Weinheiin. Publisher VCH. 1989. p. 531.

Hölderich, W. F. et al. “The use of zeolites in the synthesis of fine and intemediate chemicals”. En: Catal. Today. Vol. 37. 1997. p. 353. DOI: https://doi.org/10.1016/S0920-5861(97)81094-2

Adolfsson, A. et al. “Efficient epoxidation of alkenes with aqueous hydrogen peroxide catalyzed by methyltrioxorhenium and 3-cyanopyridine”. En: J. Org. Chem. Vol. 65. 2000. p. 8.651. DOI: https://doi.org/10.1021/jo005623+

Herrmann, W. A. et al. “Alkylrhenium oxides as homogeneous epoxidation catalysts: activity, stability, deactivation”. En: J. Mol. Catal, A. Vol. 86. 1994. p. 243. DOI: https://doi.org/10.1016/0304-5102(93)E0162-A

Romao, C. C. et al. “Rhenium (VII) oxo and imido complexes: synthesis, structures and applications”. En: Chem. Rev. Vol. 97. 1997. p. 3.246. DOI: https://doi.org/10.1021/cr9703212

Zhu, Z. et al. “Kinetics and mechanism of oxidation of anilines by hydrogen peroxide as catalyzed by Methylrhenium trioxide”. En: J. Org. Chem. Vol. 60. 1995. p. 1.326. DOI: https://doi.org/10.1021/jo00110a042

Van Vliet, M.C.A., et al. “Rhenium catalyzed epoxidations with hydrogen peroxide: tertiary arsines as effective cocatalysts”. En: J. Chem. Soc., Perkin Trans. Vol. 1. 2000, 377-380. DOI: https://doi.org/10.1039/a907975k

Abu-Omar, M.M., et al. “Deactivation of methylrhenium trioxide-peroxide catalysts by diverse and competing pathways”. En: J. Amer. Chem. Soc. Vol. 118. 1996. p. 4.966. DOI: https://doi.org/10.1021/ja952305x

Rudolph, J., et al. “Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligand acceleration”. En: J. Am. Chem. Soc. Vol. 119. 1997. p. 6.189. DOI: https://doi.org/10.1021/ja970623l

Adolfsson, H., et al. “Comparison of amine additives most effective in the new methyltrioxorhenium-catalyzed epoxidation process”. En: Tetrahedron Letters. Vol. 40. 1999. p. 3.991. DOI: https://doi.org/10.1016/S0040-4039(99)00661-9

Ferreira, P., et al. “Bidentate Lewis Base Adducts of methyltrioxorhenium (VII) and their application in catalytic epoxidation”. En: Inorg. Chem. Vol. 40. 2001. p. 5.834. DOI: https://doi.org/10.1021/ic010610f

Copéret, C., et al. “A simple and efficient method for epoxidation of terminal alkenes”. En: Chem. Commun. 1997. p. 1.565. DOI: https://doi.org/10.1039/a703542j

Kühn, F. E., et al. “Trigonal-bipyramidal Lewis Base adducts of methyltrioxorhenium (VII) and their bisperoxo congeners: characterization, application in catalytic epoxidation, an density functional mechanistic study”. En: Chem. Eur. J. Vol. 5. No. 12. 1999. p. 3603. DOI: https://doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3603::AID-CHEM3603>3.0.CO;2-W

Yudin, A. K. et al. “Bis (trimetylsilyl) Peroxide extends the range of oxorhenium catalysts for olefin epoxidation”. En: J. Am. Chem. Soc. Vol. 119. 1997. p. 11.536. DOI: https://doi.org/10.1021/ja973043x

Villa de P., A. L., et al. “Selective epoxidation of monoterpenes with methyltrioxorhenium and H2O2”. En: Tetrahedron Letters. Vol. 39. 1998 p. 8.521. DOI: https://doi.org/10.1016/S0040-4039(98)01853-X

Sales, H., et al. “Epoxidation of soybean oil catalyzed by CH3ReO3/H2O2”. En: Studies in Surface and Catalysis. Corma, F. V. Melo, S. Mendioroz, J. L. G. Fierro (Editors). Vol. 130A. 2000. p. 1.661. DOI: https://doi.org/10.1016/S0167-2991(00)80439-5

Gansäue, A. “A novel methyltrioxorhenium (MTO)-catalyzed epoxidation of olefins: an impressive example of simplicity, selectivity, and efficiency”. En: Angew. Chem. Int. Ed. Engl. Vol. 36. No. 23. 1997. p. 2.591. DOI: https://doi.org/10.1002/anie.199725911

Herrmann, W. A., et al. “Methyltrioxorhenium/pyrazole-a highly efficient catalyst for the epoxidation ofolefins”. En: J. Organometallic Chem. Vol. 555. 1999. P. 293. DOI: https://doi.org/10.1016/S0022-328X(97)00784-5

Wang, W. D. et al. “Effects of pyridine and its derivatives on the equilibrium and kinetics pertaining to epoxidation reactions catalyzed by methyltrioxorhenium”. En: J. Am. Chem. Soc. Vol. 120. 1998. p. 11.335. DOI: https://doi.org/10.1021/ja9813414

Owens, G. S., et al. “Rhenium oxo complexes in catalytic oxidations”. En: Catal. Today. Vol. 555. 2000. p. 317. DOI: https://doi.org/10.1016/S0920-5861(99)00251-5

Nakajima, M., et al. “A novel dissymmetric chiral ligand based on amine N-oxide: (R)- and (S)-3,3’-dimethyl-2,2’-biquinoline N,N’-dioxide”. En: Tetrahedron: Asymmetry. Vol. 8, No. 3. 1997. p. 341. DOI: https://doi.org/10.1016/S0957-4166(96)00521-6

Nakajima, M., et al. “Bipyridine N,N’-Dioxide: A felicitous ligand for methyltrioxorhenium-catalyzed epoxidation of olefin with hydrogen peroxide”. En: Tetrahedron Letters. Vol. 39. 1998. p. 87. DOI: https://doi.org/10.1016/S0040-4039(97)10495-6

Comunicación personal profesor Georges Gelbard y Valentin Pop.

Reichardt, C. Solvent effects in organic chemistry. Weinheim. Verlag CHEMIE. 1979. p. 353.

http://www.erowid.org/psychoactives/chemistry/chemistry_info5.shtml.

Iskra, J., et al. “Methyltrioxorhenium-catalysed epoxidation of alkenes: enhancement of reactivity in hexafluoro-2-propanol”, En: Tetrahedron Letters. Vol. 43. 2002. p. 1.001. DOI: https://doi.org/10.1016/S0040-4039(01)02316-4

Van Vliet, M. C. A., et al. “Methyltrioxorhenium-catalysed epoxidation of alkenes in trifluoroethanol”. En: Chem. Commun. 1999. p. 821. DOI: https://doi.org/10.1039/a902133g

Downloads

Published

2003-03-06

How to Cite

Gonazález R., L. M., Villa de P., A. L., Gelbard, G., & Montes de Correa, C. (2003). Solvent and ligand effects on α-pinene epoxidation with Methyltrioxorhenium/hydrogen peroxide system (MTO/H2 O2 ). Revista Facultad De Ingeniería Universidad De Antioquia, (30), 61–70. https://doi.org/10.17533/udea.redin.327311

Most read articles by the same author(s)

1 2 3 4 5 > >>