Marginal technology based on consequential life cycle assessment. The case of Colombia

Authors

  • Johan Andrés Vélez-Henao National University of Colombia https://orcid.org/0000-0002-8779-5808
  • Claudia María Garcia-Mazo National University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.n90a07

Keywords:

renewable resources, energy planning, sustainability

Abstract

Electricity data is one of the key factors in life cycle assessment (LCA). There are two different approaches to model electricity and to apply average or marginal data in LCA studies. Marginal data is used in consequential whereas average data is considered in attributional studies. The aim of this study is to provide the long-term marginal technology for electricity power generation in Colombia until 2030. This technology is one capable of responding to small changes in demand on the market and is an important issue when assessing the environmental impacts of providing electricity. Colombia is a developing country with a national power grid, which historically has been dominated by Hydropower rather than fossil fuels. This particularity makes Colombian national power grid vulnerable to climatic variations; therefore, the country needs to introduce renewable resources into the power grid. This study uses consequential life cycle assessment and data from Colombian national plans for capacity changes in the power grid. The results show that whereas marginal electricity technology would most probably be Hydropower, Wind and Solar power are projected to reach more than 1% of the national power grid by 2030.

|Abstract
= 426 veces | HTML
= 0 veces| | PDF
= 348 veces|

Downloads

Download data is not yet available.

Author Biographies

Johan Andrés Vélez-Henao, National University of Colombia

GEYMA research group. Faculty of Mines, Medellín.

Claudia María Garcia-Mazo, National University of Colombia

GEYMA research group. Faculty of Mines, Medellín.

References

X.-F. de ISA, “Informe de operación del sin y administración del mercado 2016,” Sistema Interconectado Nacional (SIN)and Mercado de Energía Mayorista (MEM), Medellín, Colombia, Tech. Rep., 2016.

I. E. A. EIA. (2015) Statistics. Accessed May. 9, 2018. [Online]. Available: http://energyatlas.iea.org/#!/tellmap/-1118783123/3

Fenómeno El Niño, Centro de Documentación e Información de Gestión del Riesgo de Desastres, Unidad Nacional para la Gestión del Riesgo de Desastres, Colombia, 2016.

C. de Colombia. (2014, May. 13). [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html

F. Natura and M. de Ambiente y Desarrollo Sostenibleand WWF-Colombia, El ABC de los compromisos de Colombia para la Cop 21, 2nd ed. Santiago de Cali, Coombia: WWF-Colombia, 2015.

U. Nations. (2017) Sustainable development goals. Accessed Dec. 21, 2017. [Online]. Available: http://www.un.org/sustainabledevelopment/

X.-F. de ISA, “Informe de operación del sin y administracion del merado 2010,” XM S.A. E.S.P., Medellin, Colombia, Tech. Rep., 2010.

R. Turconi, “Life cycle assessment of electricity systems,” PhD. thesis, Dept. Environ. Eng., Technical University of Denmark, Lyngby, Denmark, 2014.

M. A. Curran, M. Mann, and G. Norris, “The international workshop on electricity data for life cycle inventories,” Journal of Cleaner Production, vol. 13, no. 8, pp. 853–862, Jun 2005.

B. P. Weidema, N. Frees, and A. Nielsen, “Marginal production technologies for life cycle inventories,” Int. J. Life Cycle Assess., vol. 4, no. 1, pp. 48–56, 1999.

T. Ekvall and B. P. Weidema, “System boundaries and input data in consequential life cycle inventory analysis,” Int. J. Life Cycle Assess, vol. 9, no. 3, p. 161–171, May. 2004.

G. Zhao, J. M. Guerrero, and Y. Pei, “Marginal generation technology in the chinese power market towards 2030 based on consequential life cycle assessment,” Energies, vol. 9, no. 10, Sep. 2016.

U. de Planeación Minero Energética – UPME. (2016) Plan de expansión de referencia generación – transmisión 2016 – 2030. Ministerio de Minas y Energía. Bogotá, Colombia. [Online]. Available: http://www1.upme.gov.co/Documents/Energia%20ElectricaPlan_GT_2017_2031_PREL.pdf

D. García and J. D. Chacón, “Efectos macroeconomicos esperados del fenomeno del niño,” Fundesarrollo, Bogotá, Colombia, Tech. Rep., Aug. 2014.

C. A. de Fomento (CAF). (2000, Dic.) El fenómeno el niño 1997-1998: Memoria, retos y soluciones: Colombia. Corporación Andina de Fomento (CAF). Caracas, VE.

M. de Minas y Energía. (2012) Sector energía eléctrica. [Online]. Available: https://www.minminas.gov.co/documents/10180/23400/05-ENERGIA2010-2011.pdf/770a198d-d4ee-4687-b74c-74592b403ae6

MarketLine. (2018, Oct.) Colombia: In-depth pestle insights. Accessed Nov. 10, 2018. [Online]. Available: https://store.marketline.com/report/ml00002-036--colombia-in-depth-pestle-insights/

OECD, U. N. E. C. for Latin America, and the Caribbean, OECD Environmental Performance Reviews: Colombia 2014, 2014. [Online]. Available: https://www.oecd-ilibrary.org/content/publication/9789264208292-en

D. Hoornweg and P. Bhada-Tata. (2012, Mar.) What a waste: A global review of solid waste management. World Bank Group. Washington, USA. [Online]. Available: http://documentos.bancomundial.org/curated/es/302341468126264791/pdf/68135-REVISED-What-a-Waste-2012-Final-updated.pdf

P. Ghisellini, C. Cialani, and S. Ulgiati, “A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems,” J. Clean. Prod., vol. 114, pp. 11–32, Feb. 2016.

M. Geissdoerfer, P. Savaget, N. M. Bocken, and E. J. Hultink, “The circular economy – a new sustainability paradigm?” J. Clean. Prod., vol. 143, pp. 757–768, Feb. 2017.

Environmental Management—Life Cycle Assessment—Principles and Framework; 14040, International Organization for Standardization (ISO), 2006.

B. P. Weidema, “Market aspects in product life cycle inventory methodology,” J. Clean. Prod., vol. 1, no. 3-4, pp. 161–166, 1993.

J. M. Earles and A. Halog, “Consequential life cycle assessment: a review,” Int. J. Life Cycle Assess., vol. 16, no. 5, pp. 445–453, Mar. 2011.

A. Zamagni, J. Guinée, R. Heijungs, P. Masoni, and A. Raggi, “Lights and shadows in consequential lca,” Int. J. Life Cycle Assess., vol. 17, no. 7, pp. 904–918, Aug. 2012.

G. Finnveden and et al, “Recent developments in life cycle assessment,” Journal of Environmental Management, vol. 91, no. 1, pp. 1–21, Oct. 2009.

B. V. Mathiesen, M. Munster, and T. Fruergaard, “Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments,” Journal of Cleaner Production, vol. 17, no. 15, pp. 1331–1338, 2009.

Inventory of country specific electricity in LCA.consequential and attributional scenarios, 2.0 LCA consultants, 2011.

S. P. Karthikeyan, I. J. Raglend, and D. P. Kothari, “A review on market power in deregulated electricity market,” International Journal of Electrical Power & Energy Systems, vol. 48, pp. 139–147, Jun. 2013.

M. de Minas y Energía, Plan Energético Nacional Estrategia Energética Integral. Colombia: Unidad de Planeación Minero Energética, 2003.

S. Arango, J. J. García, and A. F. Ortiz, “Impacto de algunas política públicas en la eficiencia asignativa del mercado spot eléctrico colombiano,” thesis, Univ. Eafit, Medellín, Colombia, 2015.

u. Unidad de Planeación Minero Energética. (2005) Boletín estadístico de minas y energía 1994-2004. [Online]. Available: https://biblioteca.minminas.gov.co/pdf/BOLETIN%20ESTADISTICO%20DE%20MINAS%20Y%20ENERGIA%201999%20-%202010.pdf

Y. Olaya, S. Arango, and E. R. Larsen, “How capacity mechanisms drive technology choice in power generation: The case of colombia,” Renew. Sustain. Energy Rev., vol. 56, pp. 563–571, Apr. 2016.

U. Unidad de Planeación Minero Energética, “Boletin estadistico minas y energia 2000-2013,” pp. 1–53, 2014.

U. Unidad de Planeación Minero Energética, “Sector gas natural,” Boletín Estadístico: Minas y energía 2012 – 2016, p. 200, Oct. 2016.

L. Gaudard and F. Romerio, “Reprint of ‘the future of hydropower in europe: Interconnecting climate, markets and policies,” Environ. Sci. Policy, vol. 43, pp. 5–14, Mar 2014.

U. de Planeación Minero Energética – UPME, “Plan de expansión de referencia generación-transmisión 2015-2029,” Ministerio de Minas y Energía, p. 616, 2016.

B. Mathiesen, M. Münster, and T. Fruergaard, Energy system analyses of the marginal energy technology in life cycle assessments. SETAC, 2007, pp. 15–18.

O. Eriksson, G. Finnveden, T. Ekvall, and A. Björklund, “Life cycle assessment of fuels for district heating : A comparison of waste incineration , biomass- and natural gas combustion,” Energy Policy, vol. 35, no. 2, pp. 1346–1362, Feb. 2007.

H. Lund, B. V. Mathiesen, and P. Christensen, “Energy system analysis of marginal electricity supply in consequential lca,” Int. J. Life Cycle Assess., vol. 15, no. 3, pp. 260–271, Mar. 2010.

U. de Planeación Minero Energética – UPME, “Plan de expansión de referencia generación transmisión: 2000 - 2015,” Ministerio de Minas y Energía, pp. 1–208, 2000.

U. de Planeación Minero Energética – UPME, “Plan de expansión de referencia generación – transmisión 2006-2020,” Ministerio de Minas y Energía, 2006.

Downloads

Published

2019-01-24

How to Cite

Vélez-Henao, J. A., & Garcia-Mazo, C. M. (2019). Marginal technology based on consequential life cycle assessment. The case of Colombia. Revista Facultad De Ingeniería Universidad De Antioquia, (90), 51–61. https://doi.org/10.17533/udea.redin.n90a07