Evaluation of an acoustic conditioning panel made from typical Colombian fibres

Authors

  • Darío Alfonso Páez Soto University of San Buenaventura
  • Luis Jorge Herrera Fernández University of San Buenaventura
  • Oscar Esneider Acosta Agudelo University of San Buenaventura
  • Marcelo Herrera Martínez University of Iceland

DOI:

https://doi.org/10.17533/udea.redin.20191032

Keywords:

guadua angustifolia, natural fibres, acoustic conditioning, perforated panels, sustainable development

Abstract

A perforated panel from guadua fibres is implemented after acoustic characterization of the fibres. The acoustic characteristics of the fibre are identified and further, the acoustic behaviour of the acoustic absorption system made from guadua is analysed. It proves the suitability of natural fibres and bioresidues for systems which goal is to bring acoustic comfort to society. In this sense, the present research is aligned with the principles of Sustainable Development agreed at Rio de Janeiro, in 1992.

|Abstract
= 561 veces | HTML
= 0 veces| | PDF
= 368 veces|

Downloads

Download data is not yet available.

Author Biographies

Darío Alfonso Páez Soto, University of San Buenaventura

Sound Engineering Program, Faculty of Engineering.

Luis Jorge Herrera Fernández, University of San Buenaventura

Sound Engineering Program, Faculty of Engineering.

Oscar Esneider Acosta Agudelo, University of San Buenaventura

Sound Engineering Program, Faculty of Engineering.

Marcelo Herrera Martínez, University of Iceland

Faculty of Mechanical and Industrial Engineering.

References

UNESCO, “The rio declaration on environment and development,” in The United Nations Conference on Environment and Development, Rio de Janeiro, BR, 1992.

D. Páez, M. Herrera, and L. Calderón, “Possibilities for the develop-ment of acoustic-mechanical ystems based on Colombian typical fibres,” in 23rd International Congress on Sound and Vibration 2016(ICSV 23), Athens, Greece, 2016, pp. 4030–4037.

D. Páez, L. Herrera, O. Acosta, S. García, and M. Herrera, “Develop-ment of a perforated panel for acoustic conditioning based on Colombian guadua fiber (Guadua Angustifolia Kunth),” Tecciencia, vol. 13, no. 25, June 20 2019. [Online]. Available: http://dx.doi.org/10.18180/tecciencia.2018.25.2

H. Mamtaz, M. Foulad, M. Al-Atabi, and S. Namasivayam, “Acoustic absorption of natural fibers,” Journal of Engineering, vol. 2016, no. 7, January 2016. [Online]. Available: http://dx.doi.org/10.1155/2016/5836107

J. Arenas and M. Crocker, “Recent trends in porous sound-absorbing materials,” Sound & vibration, vol. 44, no. 7, pp. 12–17, Jul. 2010.

A. Salas and M. Barbero, “Implementación de tecnologías constructi-vas con fibras vegetales que sean sostenibles en contextos de precarie-dad,” in IV Congreso Internacional de Estudios del Desarrollo REEDES, Córdoba, Esp., 2018.

C. Burattia, E. Belloni, E. Lascaro, G. López, and P. Ricciardi, “Sustai-nable panels with recycled materials for building applications: Environ-mental and acoustic characterization,” Energy Procedia, vol. 101, Novem-ber 2016. [Online]. Available: https://doi.org/10.1016/j.egypro.2016.11.123

ISO 10534-2:1998 Acoustics — Determination of sound absorption coe-fficient and impedance in impedance tubes — Part 2: Transfer-function method, ISO, 1998.

ISO 3382-2:2008 Acoustics — Measurement of room acoustic parame-ters — Part 2: Reverberation time in ordinary rooms, ISO, 2008.

K. Jambrosic, M. Horvat, and H. Domitrovic, “Reverberation time mea-suring methods,” J. Acoust. Soc. Am., vol. 123, no. 5, June 2008. [Online]. Available: https://doi.org/10.1121/1.2934829

M. Garai, “On the single number rating of sound absorption,” Building Acoustics, vol. 1, no. 3, September 1 1994. [Online]. Available: https://doi.org/10.1177/1351010X9400100304

E. Mommertz, “Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique,” Applied Acoustics, vol. 46, no. 3, 1995. [Online]. Available: https://doi.org/10.1016/0003-682X(95)00027-7

M. Estrada, D. Linero, and F. Ramírez, “Constitutive relationship of the fiber cluster of bamboo Guadua angustifolia, determined by means of a weibull probability function and a model of progressive failure,” Mecha-nics of Materials, vol. 63, August 15 2013. [Online]. Available: https://doi.org/10.1016/j.mechmat.2013.04.007

H. C. Birnboim and J. Doly, “A rapid alkaline extraction procedure for screening recombinant plasmid DNA,” Nucleic Acids Res., vol. 7, no. 6, November 24 1979. [Online]. Available: https://doi.org/10.1093/nar/7.6.1513

M. Karjalainen, P. Antsalo, A. Mäkivirta, T. Peltonen, and V. Välimäki, “Estimation of modal decay parameters from noisy response measure-ments,” J. Audio Eng. Soc., vol. 50, no. 11, pp. 867–878, Nov. 2002.

W. Sabine, Collected papers on acoustics. EE. UU.: Cambridge Har-vard University Press, 1922.

T. Cox and P. D’Antonio, Acoustic Absorbers and Diffusers: Theory, Design and Application, 2nd ed. New York, EE. UU.: Taylor & Francis, 2009.

Downloads

Published

2020-10-17

How to Cite

Páez Soto, D. A., Herrera Fernández, L. J., Acosta Agudelo, O. E., & Herrera Martínez, M. (2020). Evaluation of an acoustic conditioning panel made from typical Colombian fibres. Revista Facultad De Ingeniería Universidad De Antioquia, (94), 102–116. https://doi.org/10.17533/udea.redin.20191032

Most read articles by the same author(s)