Evaluation of an acoustic conditioning panel made from typical Colombian fibres
DOI:
https://doi.org/10.17533/udea.redin.20191032Keywords:
guadua angustifolia, natural fibres, acoustic conditioning, perforated panels, sustainable developmentAbstract
A perforated panel from guadua fibres is implemented after acoustic characterization of the fibres. The acoustic characteristics of the fibre are identified and further, the acoustic behaviour of the acoustic absorption system made from guadua is analysed. It proves the suitability of natural fibres and bioresidues for systems which goal is to bring acoustic comfort to society. In this sense, the present research is aligned with the principles of Sustainable Development agreed at Rio de Janeiro, in 1992.
Downloads
References
UNESCO, “The rio declaration on environment and development,” in The United Nations Conference on Environment and Development, Rio de Janeiro, BR, 1992.
D. Páez, M. Herrera, and L. Calderón, “Possibilities for the develop-ment of acoustic-mechanical ystems based on Colombian typical fibres,” in 23rd International Congress on Sound and Vibration 2016(ICSV 23), Athens, Greece, 2016, pp. 4030–4037.
D. Páez, L. Herrera, O. Acosta, S. García, and M. Herrera, “Develop-ment of a perforated panel for acoustic conditioning based on Colombian guadua fiber (Guadua Angustifolia Kunth),” Tecciencia, vol. 13, no. 25, June 20 2019. [Online]. Available: http://dx.doi.org/10.18180/tecciencia.2018.25.2
H. Mamtaz, M. Foulad, M. Al-Atabi, and S. Namasivayam, “Acoustic absorption of natural fibers,” Journal of Engineering, vol. 2016, no. 7, January 2016. [Online]. Available: http://dx.doi.org/10.1155/2016/5836107
J. Arenas and M. Crocker, “Recent trends in porous sound-absorbing materials,” Sound & vibration, vol. 44, no. 7, pp. 12–17, Jul. 2010.
A. Salas and M. Barbero, “Implementación de tecnologías constructi-vas con fibras vegetales que sean sostenibles en contextos de precarie-dad,” in IV Congreso Internacional de Estudios del Desarrollo REEDES, Córdoba, Esp., 2018.
C. Burattia, E. Belloni, E. Lascaro, G. López, and P. Ricciardi, “Sustai-nable panels with recycled materials for building applications: Environ-mental and acoustic characterization,” Energy Procedia, vol. 101, Novem-ber 2016. [Online]. Available: https://doi.org/10.1016/j.egypro.2016.11.123
ISO 10534-2:1998 Acoustics — Determination of sound absorption coe-fficient and impedance in impedance tubes — Part 2: Transfer-function method, ISO, 1998.
ISO 3382-2:2008 Acoustics — Measurement of room acoustic parame-ters — Part 2: Reverberation time in ordinary rooms, ISO, 2008.
K. Jambrosic, M. Horvat, and H. Domitrovic, “Reverberation time mea-suring methods,” J. Acoust. Soc. Am., vol. 123, no. 5, June 2008. [Online]. Available: https://doi.org/10.1121/1.2934829
M. Garai, “On the single number rating of sound absorption,” Building Acoustics, vol. 1, no. 3, September 1 1994. [Online]. Available: https://doi.org/10.1177/1351010X9400100304
E. Mommertz, “Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique,” Applied Acoustics, vol. 46, no. 3, 1995. [Online]. Available: https://doi.org/10.1016/0003-682X(95)00027-7
M. Estrada, D. Linero, and F. Ramírez, “Constitutive relationship of the fiber cluster of bamboo Guadua angustifolia, determined by means of a weibull probability function and a model of progressive failure,” Mecha-nics of Materials, vol. 63, August 15 2013. [Online]. Available: https://doi.org/10.1016/j.mechmat.2013.04.007
H. C. Birnboim and J. Doly, “A rapid alkaline extraction procedure for screening recombinant plasmid DNA,” Nucleic Acids Res., vol. 7, no. 6, November 24 1979. [Online]. Available: https://doi.org/10.1093/nar/7.6.1513
M. Karjalainen, P. Antsalo, A. Mäkivirta, T. Peltonen, and V. Välimäki, “Estimation of modal decay parameters from noisy response measure-ments,” J. Audio Eng. Soc., vol. 50, no. 11, pp. 867–878, Nov. 2002.
W. Sabine, Collected papers on acoustics. EE. UU.: Cambridge Har-vard University Press, 1922.
T. Cox and P. D’Antonio, Acoustic Absorbers and Diffusers: Theory, Design and Application, 2nd ed. New York, EE. UU.: Taylor & Francis, 2009.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.