Hydrodynamics in stirred vessels with flat-bladed disk-style turbine
DOI:
https://doi.org/10.17533/udea.redin.343238Keywords:
Hydrodynamics, disk style turbines, stirred tanks, mathematical modellingAbstract
The flat-bladed disk-style turbines are the radial flow impellers more widely used in industry because they can be implemented to obtain this flow pattern in the in the standard geometric configuration of stirred tanks. The detailed study of the hydrodynamics in this agitation system is very important in order to obtain the basic knowledge required both for the operation and mathematical modelling of different complex processes carried out in the stirred tanks, such as the spherical crystallization. The aim of this paper is to review the published information on hydrodynamics and mathematical modelling of the fluid dynamics in stirred tanks by flat-bladed disk-style turbines, pointing out the advances as well as the topics that need further research.
Downloads
References
G.B. Tatterson. “Fluid mixing and gas dispersion in agitated tanks”. Ed McGraw-Hill. New York. 1991.
P.R. Gogate, A.A.C.M. Beenackers, A.B. Pandit. “Multiple-impeller systems with a special emphasis on bioreactors: a critical review”. Biochem. Eng. J. Vol. 6. 2000. pp. 109-144. DOI: https://doi.org/10.1016/S1369-703X(00)00081-4
S. M. Kresta, G. Zhou. “Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers”. AIChE J. Vol. 42. 1996. pp. 2476-2490. DOI: https://doi.org/10.1002/aic.690420908
E.S. Wernersson, C. Trägardh. “Turbulence characteristics in turbine-agitated tanks of different sizes and geometrics”. Chem. Eng. J. Vol. 72. 1999. pp. 97-107. DOI: https://doi.org/10.1016/S1385-8947(98)00147-8
J. Bertrand, C. Xuereb. “Some aspects of CFD on mixing: Industrial applications”. Proc. 3rd. Int. Symp. on Mixing in Industrial Processes. Soc. Chem. Eng. Japan. Tokyo. 1999. pp. 1-12.
V.V. Ranade, J.B. Joshi. “Flow generated by disk turbine: Parte I Experimental”. Chem. Eng. Res. Des. Vol. 68. 1990. pp. 19-33.
A. Bakker, H.E.A. van den Akker. “Single-Phase flow in stirred reactors”. Chem. Eng. Res. Des. Vol. 72. 1994. pp. 583-593.
K. Rutherford, K.C. Lee, S.M.S. Mahomoudi, M. Yianneskis. “The influence of Rushton Impeller blade and disk thickness on the mixing characteristics of stirred vessels”. Chem. Eng. Res. Des. Vol. 74. Part A. 1996. pp. 369-378.
K.C. Lee, M. Yianneskis. “The extent of periodicity of the flow in vessels stirred by Rushton impellers”. AIChE Symposium series. Vol. 90. 1994. pp. 5-18.
M. Schafer, M. Hofken, F. Durst. “Detailed LDV measurements for visualization of the flow field within a stirred-tank reactor equipped with a Rushton Turbine”. Chem. Eng. Res. Des. Vol. 75. 1997. pp. 729-736. DOI: https://doi.org/10.1205/026387697524399
V.P. Mishra, J.B. Joshi. “Flow generated by a disc turbine: Part III: Effect of impeller diameter, impeller location and comparison with other radial flow turbine”. Chem. Eng. Res. Des. Vol. 71. 1993. pp. 563-573.
P. Mavros, P. Baudou. “Quantification of the performance of agitators in stirred vessels: Definition and use of an agitation index”. Chem. Eng. Res. Des. Vol. 75. 1997. pp. 737-745. DOI: https://doi.org/10.1205/026387697524407
J.J. Derksen, J. H. Stockmann, H.E.A. van den Akker. “Three-dimensional laser Doppler anemometry in a stirred tank”. Récents Prog. Génie Procédés. Vol 11. 1997. pp. 81-88.
P. Mavros, C. Xuereb, J. Bertrand. “Determination of 3-D flow fields in agitated vessels by laser-doppler velocimetry: Use and interpretation for RMS velocities”. Chem. Eng. Res. Des. Vol. 76. 1998. pp. 223-233. DOI: https://doi.org/10.1205/026387698524640
P. Mavros, C. Xuereb, J. Bertrand. “Determination of 3-D flow fields in agitated vessels by laser-Doppler velocimetry: Effect of impeller type and liquid viscosity on liquid flow patterns”. Chem. Eng. Res. Des. Vol. 74. 1996. pp. 658-668.
K.N. Dyster, E. Koutsakos, Z. Jaworski, A.W. Nienow. “An LDA study of the radial discharge velocities generated by a Rushton turbine: Newtonian Fluids, Re 5”. Chem. Eng. Res. Des. Vol. 71. 1993. pp. 11-23.
R. Escudié, A. Liné, M. Roustan. “Turbulent macroscale in the impeller stream of a Rushton turbine”. Proc. 10th Europ. Conf. on Mixing. Elsevier. New York. 2000. pp. 353-360. DOI: https://doi.org/10.1016/B978-044450476-0/50045-5
E.S. Wernersson, C. Trägardh. “Turbulence characteristics in turbine-agitated tanks of different sizes and geometrics”. Chem. Eng. J. Vol. 70. 1998. pp. 37-45. DOI: https://doi.org/10.1016/S1385-8947(98)00071-0
S. Michelet, M. Mahouast, A. Kemoun, J. Mallet. “Turbulence in the discharge of a Rushton turbine and Taylor’s hypothesis. Récents Prog. Génie Procédés. Vol. 11. 1997. pp. 89-96.
R. Escudié, A. Liné. “Experimental analysis of hydrodynamics in a radially agitated tank”. AIChEJ. Vol. 49. 2003. pp. 585- 603. DOI: https://doi.org/10.1002/aic.690490306
R. Escudié, D. Bouyer, A. Liné. “Characterization of trailing vortices generated by a Rushton turbine” AIChE J. Vol. 50. 2004. pp. 75-86. DOI: https://doi.org/10.1002/aic.10007
S.M. Kresta, G. Zhou. “Distribution of energy between convective and turbulent flow for three frequently used impellerse”. Chem. Eng. Res. Des. Vol. 74. 1996. pp. 379-389.
S. Baldi, M. Yianneskis. “On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements”. Chem. Eng. Sci. Vol. 59. 2004. pp. 2659- 2671. DOI: https://doi.org/10.1016/j.ces.2004.03.021
V.T. Roussinova, B. Grgic, S.M. Kresta. “Study of Macro-Instabilities in Stirred Tanks Using a Velocity Decomposition Technique”. Chem. Eng. Res. Des. Vol. 78. 2000. pp. 1040-1052. DOI: https://doi.org/10.1205/026387600528157
L. Nikiforaki, G. Montante, K.C. Lee, M. Yianneskis. “On the origin, frequency and magnitude of macroinstabilities of the flows in stirred vessels”. Chem. Eng. Sci. Vol. 58. 2003. pp. 2937-2949. DOI: https://doi.org/10.1016/S0009-2509(03)00152-0
C. Galletti, A. Paglianti, K.C. Lee, M. Yianneskis. “Reynolds number and impeller diameter effects on instabilities in stirred vessels”. AIChE J. Vol. 50. 2004. pp. 2050-2063. DOI: https://doi.org/10.1002/aic.10236
P. Hasal, I. Fořt, J. Kratěna. “Force Effects of the Macroinstability of Flow Pattern on Radial Baffles in a Stirred Vessel with Pitched-blade and Rushton Turbine Impellers”. Chem. Eng. Res. Des. Vol. 82. 2004. pp. 1268-1281. DOI: https://doi.org/10.1205/cerd.82.9.1268.44169
J. Fan, Q. Rao, Y. Wang, W. Fei. “Spatio-temporal analysis of macro-instability in a stirred vessel via digital particle image velocimetry (DPIV)”. Chem. Eng. Sci. Vol. 59. 2004. pp. 1863-1873. DOI: https://doi.org/10.1016/j.ces.2004.01.039
R.S. Cherry, E.L. Aloi. “Cellular response to agitation characterized by energy dissipation at the impeller tip”. Chem. Eng. Sci. Vol. 51. 1996. pp. 1523-1529. DOI: https://doi.org/10.1016/0009-2509(95)00307-X
V.P. Mishra, J.B. Joshi. “Flow generated by a disc turbine: Part III: Effect of impeller diameter, impeller location and comparison with other radial flow turbine”. Chem. Eng. Res. Des. Vol. 71. 1993. pp. 563-573.
K. Ng, N.G. Fentiman, K.C. Lee, M. Yianneskis. “Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller”. Chem. Eng. Res. Des. Vol. 76. 1998. pp. 737-747. DOI: https://doi.org/10.1205/026387698525315
D. García-Cortés, E. Ferrer, E. Barberà. “Hydrodynamic characterization of the flow induced b a four-bladed
disk-style turbine”. Chem. Eng. Res. Des. Vol. 79. 2001. pp. 269-273. DOI: https://doi.org/10.1205/026387601750281798
V.P. Mishra, J.B. Joshi. “Flow generated by a disc turbine: Part IV: Multiple impellers”. Chem. Eng. Res. Des. Vol. 72. 1994. pp. 657-668.
S.M.S. Mahmoudi. “Velocity and mixing characteristics of stirred vessels with two impellers”. Ph. D. Thesis. University of London, England. 1994.
K. Rutherford, K.C. Lee, S.M.S. Mahmoudi, M. Yianneskis. “Hydrodynamics characteristics of Dual Rushton Impeller stirred vessels”. AIChE J. Vol 42. 1996. pp. 332-346. DOI: https://doi.org/10.1002/aic.690420204
D. García-Cortés “Contribución al estudio de la hidrodinámica y la transferencia de masa en reactores tipo tanque agitado mediante un enfoque global y local en sistemas gas-líquido”. Ph. D. Thesis. INP-ENSIACET, Toulouse, France. 2003.
C. Galletti, E. Brunazzi, M. Yianneskis, A. Paglianti. “Spectral and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel”. Chem. Eng. Sci. Vol 58. 2003. pp. 3859- 3875. DOI: https://doi.org/10.1016/S0009-2509(03)00230-6
Y.Q. Cui, R.G.J.M. van der Lans, K.Ch.A.M. Luyben. “Local power uptake in gas-liquid systems with single and multiple Rushton turbines”. Chem. Eng. Sci. Vol. 51. 1996. pp. 2631-2636. DOI: https://doi.org/10.1016/0009-2509(96)00128-5
J.H. Rushton, E.W. Costich, H.J. Everett. “Power characteristics of mixing impellers. Part I”. Chem. Eng. Pro. Vol. 46. 1950. pp. 395-404.
P. Seichter. “Investigation of turbine agitators for flowthrough floculation chambers”. Int. Chem. Eng. Vol. 16. 1976. pp. 668-680.
W. Bujalski, A.W. Nienow, S. Chatwin, M. Cooke. “The dependency on scale of power numbers of Rushton dick turbines”. Chem. Eng. Sci. Vol. 42. 1987. pp. 317-326. DOI: https://doi.org/10.1016/0009-2509(87)85061-3
R.L. Bates, P.L. Fondy, R.R. Corpstein. “An examination of some geometric parameters of impeller power”. Ind. Eng. Chem. Proc. Des. & Dev., Vol. 2. 1963. pp. 310-314. DOI: https://doi.org/10.1021/i260008a011
J.Y. Oldshue “Fluid Mixing Technology”. Ed McGraw-Hill Publ. Co. New Cork. 1983. pp. 64-67.
A.W. Nienow, D. Miles. “Impeller power numbers in closed vessels”. Ind. Eng. Chem. Proc. Des. Dev. Vol. 10. 1971. pp. 41-43. DOI: https://doi.org/10.1021/i260037a007
J. Karcz, M. Major. “An effect of a baffle height on the power consumption in an agitated vessel”. Chem. Eng. Processing. Vol. 37. 1998. pp. 249-256. DOI: https://doi.org/10.1016/S0255-2701(98)00033-6
F. Strek, H. Lacki, J. Karcz. “Power requirements of high-speed stirrers in mixers of various diameters”. Prace Nauk. Politech. Szczecin. Vol. 273. 1984. pp. 148-150.
J.H. Rushton, E.W. Costich, H.J. Everett. “Power characteristics of mixing impellers. Part II”. Chem. Eng. Prog. Vol. 46(9). 1950. pp. 467-476.
P.H. Calderbank, M.B. Moo-Young. “The power characteristics of agitators for the mixing of Newtonian and non-newtonian fluids”. Trans. Instn. Chem. Engrs. Vol 39. 1961. pp. 337-347.
R.-V. Roman, M. Gavrilescu, V. Efimov. “Evaluation of power consumption por newtonian system mixing with a various number of Rushton turbines”. Hung. J. Ind. Chem. Vol. 20. 1992. pp. 155-160.
C. Baudou. Agitation par de systemes axiaux simples ou multi-etages. Obtention de l’hydrodynamique par volcimetrie laser a effet Doppler. Ph. D. Thèsis, INP-ENSIGC. Toulouse. 1997.
J. Costes, J.P. Couderc. “Study by laser doppler anemometry of the turbulent flow induced by a Rushton turbine in a stirred tank: influence of the size of the units-I. Mean flow and turbulence”. Chem. Eng. Sci. Vol. 43. 1988. pp. 2751-2764. DOI: https://doi.org/10.1016/0009-2509(88)80018-6
J. Medek, I. Fort. “Mixing in vessel with eccentrical mixer”. Proc. 5th Europ. Conf. on Mixing. BHRA press. Cranfield. 1985. pp. 263-271.
V. Singh, A. Constantinides, R. Fuchs. “A new method for fermentor scale - up incorporating both mixing and mass transfer effects - I. Theoretical basis”. En: C. S. Ho, J.Y. Oldshue. (Eds). Biotechnology process: Scale-up and mixing. AIChE. New York. 1987. pp. 200-214.
B. Mayr, E. Nagy, P. Horvat, A. Moser. “Modelling of mixing and simulation of its effect on glutamic acid fermentation”. Chem. Biochem. Eng. Q. Vol. 7. 1993. pp. 31-42.
Y.Q. Cui, R.G.J.M. van der Lans, H.J. Noorman, K.Ch. A.M. Luyben. “Compartment mixing model for stirred reactors with multiple impellers”. Chem. Eng. Res. Des. Vol. 74. 1996. pp. 261-271.
S.S. Alves, J.M.T. Vasconcelos, J.M. Barata. “Alternative compartment models of mixing in tall tanks agitated by multi-Rushton turbines”. Chem. Eng. Res. Des. Vol. 75. 1997. pp. 334-338. DOI: https://doi.org/10.1205/026387697523642
J.M.T. Vasconcelos, S. Alves, A.W. Nienow, W. Bujalski. “Scale-up of mixing in gassed multi-turbine agitated vessels”. Can. J. Chem. Eng. Vol. 76. 1998. pp. 398-404. DOI: https://doi.org/10.1002/cjce.5450760308
S.S. Alves, C.I. Maia, J.M.T. Vasconcelos. “Experimental and modelling study of gas dispersion in a double
turbine stirred tank”. Chem. Eng. Sci. Vol. 57. 2002. pp. 487-496. DOI: https://doi.org/10.1016/S0009-2509(01)00400-6
B. Mayr, E. Nagy, P. Horvat, A. Moser. “Scale-up on basis of structured mixing models: A new concept”. Biotech. Bioengn. Vol. 43. 1994. pp. 195-206. DOI: https://doi.org/10.1002/bit.260430303
J.A.M. Kuipers, W.P.M. Swaaij. “Application of computational fluid dynamics to chemical reaction engineering”. Reviews in Chem. Eng. Vol. 13(3). 1997.pp. 2-118. DOI: https://doi.org/10.1515/REVCE.1997.13.3.1
Z. Jaworski, K. N. Dyster, I.P.T. Moore, A.W. Nienow, M.L. Wyszynski. “The use of angle resolved LDA data to compare two differential turbulence models applied to sliding mesh CFD flow simulations in a stirred tank”. Récents Prog. Génie Procédés. Vol. 11(51). 1997. pp. 187-194.
G.K. Patterson, R.S. Brodkey. “Turbulence in mixing operations: Theory and application to mixing and reaction”. Ed Academic Press. New York. 1975. pp. 223-233.
R. Mann, P.P. Mavros, J.C. Middleton. “A structured stochastic flow model for interpreting flow-follower data from a stirred vessel”. Chem. Eng. Res. Des. Vol. 59. 1981. pp. 271-278.
R. Mann, P. Mavros. “Analysis of unsteady tracer dispersion and mixing in a stirred vessels using interconnected networks of ideal flow zones”. Proc. 4th Europ. Conf. on Mixing. BHRA Fluid Engineering. Cranfield. 1982. pp. 35-47.
R. Mann, P. Knysh, E.A. Rasekoala, M. Didari. “Mixing in a closed stirred vessel: use of network of zones to interpret mixing curves acquired by fibre – optic photometry”. Inst. Chem. Eng. Symp. Ser. Vol. 108. 1987. pp. 49-63.
R. Mann, P. Ying, K. Baker, R.B. Edwards. “Mixing of inert and reactive tracers in a twin impeller stirred vessel”. AIChE Symp. Ser. Vol. 89(293). 1993. pp. 16-20.
R. Mann. “Gas-liquid stirred vessel mixers: towards a unified theory based on networks-of-zones”. Chem. Eng. Res. Des. Vol. 64. 1986. pp. 1-23.
R. Mann, L.A. Hackett. “Fundamentals of gas-liquid mixing in a stirred vessel: an analysis of using networks of backmixed zones”. Proc. 6th Eur. Conf. on Mixing. BHRA Fluid Eng. Cranfield. 1988. pp. 321-328.
A. Brucato, L. Rizzuti. “The application of the networksof-zones model to solid –liquid suspensions”. Proc. 6th Eur. Conf. on Mixing. BHRA Fluid Eng. Cranfield. 1988. pp. 273-280.
A. Brucato, F. Magelli, M. Nocentini, L. Rizzuti. “An application of the network of zones model to solids
suspension in multiple impeller mixers”. Chem. Eng. Res. Des. Vol 69. 1991. pp. 43-52.
Y.D. Wang, R. Mann. “Mixing in a stirred semi-batch reactor: partial segregation for a pair of competing reactions analysed via network of zones”. IChemE Symp. Series. Vol 121. 1990. pp. 241-257.
Y.D. Wang, R. Mann. “Partial segregation in stirred batch reactors: Effect of Scale-up on the yield of a pair of Competing Reactions”. Chem. Eng. Res. Des. Vol. 70. 1992. pp. 282-290.
R. Mann, A.M. El-Hamouz. “Imperfect mixing and paradoxical product distributions for a stirred semibatch reactor”. AIChE Symp. Ser. Vol. 88(286). 1991. pp. 1-5.
R. Mann, A.M. El-Hamouz. “A product distribution paradox on scaling up a stirred batch reactor”. AIChEJ. Vol. 41. 1995. pp. 855-867. DOI: https://doi.org/10.1002/aic.690410413
H.V. Hristov, R. Mann. “Fluid Mixing and the Safe Quenching of a Runaway Reaction in a Stirred Autoclave”. Chem. Eng. Res. Des. Vol 80. 2002. pp. 872-879. DOI: https://doi.org/10.1205/026387602321143417
E. Wabo, M. Kagoshima, R. Mann. “Batch Stirred Vessel Mixing Evaluated by Visualized Reactive Tracers and Electrical Tomography”. Chem. Eng. Res. Des. Vol. 82. 2004. pp. 1229-1236. DOI: https://doi.org/10.1205/cerd.82.9.1229.44159
R. Mann, D. Vlaev, V. Lossev, S.D. Vlaev, J. Zahradnik, P. Seichter. “A network of zones analysis of the fundamentals of gas liquid mixing in an industrial stirred bioreactor”. Récents Prog. Génie Procédés. Vol. 11(52). 1997. pp. 223-230.
D. Vlaev, R. Mann, V. Lossev, S.D.Vlaev, J. Zahradnik, P. Seichter. “Macromixing and streptomyces fradiae. Modelling oxygen and nutrient segregation in an industrial bioreactor”. Chem. Eng. Res. Des. Vol. 78. 2000. pp. 354-362. DOI: https://doi.org/10.1205/026387600527473
J. Zahradnik, R. Mann, M. FialovaH, D. Vlaev, S.D. Vlaev, V. Lossev, P. Seichter. “A network of zone analysis of mixing and mass transfer in three industrial bioreactors”. Chem. Eng. Sci. Vol 56. 2001. pp. 485-492. DOI: https://doi.org/10.1016/S0009-2509(00)00252-9
R. Mann, P. Ying, R.B. Edwards. “Application of 3-D network of zones mixing model to a stirred vessel”. IChemE Symp. Series. Vol. 136. 1994. pp. 317-324.
P.J. Holden, R. Mann. “Turbulent 3-D mixing in stirred vessel: correlation of a networks-of-zones image reconstruction approach with pointwise measurements”. IChemE Symp. Series. Vol. 140. 1996. pp. 167-179.
M. Rahimi, P.R. Senior, R. Mann. “Visual 3-D modelling of stirred vessel mixing for an inclined-blade impeller”. Chem. Eng. Res. Des. Vol 78. 2000. pp. 348-353. DOI: https://doi.org/10.1205/026387600527464
M. Rahimi, R. Mann. “Macro-mixing, partial segregation and 3-D selectivity fields inside a semi-batch stirred reactor”. Chem. Eng. Sci. Vol 56. 2001. pp. 763-769. DOI: https://doi.org/10.1016/S0009-2509(00)00287-6
F. Guillard, C. Trägard. “Modeling of the performance of industrial bioreactors with a dynamic microenviromental approach: A critical review”. Chem. Eng. Tech. Vol. 22. 1999. pp. 187-195. DOI: https://doi.org/10.1002/(SICI)1521-4125(199903)22:3<187::AID-CEAT187>3.0.CO;2-9
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.