Hidrodinámica en tanques agitados con turbinas de disco con paletas planas
DOI:
https://doi.org/10.17533/udea.redin.343238Palabras clave:
Hidrodinámica, turbinas de disco, tanques agitados, modelación matemáticaResumen
Las turbinas de disco con paletas planas son los impelentes de flujo radial más ampliamente utilizados en la industria por constituir el impelente que forma parte de la configuración geométrica estándar para obtener este patrón de flujo en los tanques agitados. El estudio detallado de la hidrodinámica en este sistema de agitación es fundamental para continuar obteniendo conocimientos básicos imprescindibles para la síntesis y la modelación matemática de diferentes procesos complejos que se llevan a cabo en los tanques agitados, por ejemplo, la cristalización esférica. El propósito de este artículo es hacer una revisión de la información publicada sobre la hidrodinámica y la modelación matemática de la dinámica de fluidos en los tanques agitados con turbinas de disco con paletas planas y señalar los avances logrados en cada uno de los aspectos abordados y aquellos en los cuales es necesario seguir investigando.
Descargas
Citas
G.B. Tatterson. “Fluid mixing and gas dispersion in agitated tanks”. Ed McGraw-Hill. New York. 1991.
P.R. Gogate, A.A.C.M. Beenackers, A.B. Pandit. “Multiple-impeller systems with a special emphasis on bioreactors: a critical review”. Biochem. Eng. J. Vol. 6. 2000. pp. 109-144. DOI: https://doi.org/10.1016/S1369-703X(00)00081-4
S. M. Kresta, G. Zhou. “Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers”. AIChE J. Vol. 42. 1996. pp. 2476-2490. DOI: https://doi.org/10.1002/aic.690420908
E.S. Wernersson, C. Trägardh. “Turbulence characteristics in turbine-agitated tanks of different sizes and geometrics”. Chem. Eng. J. Vol. 72. 1999. pp. 97-107. DOI: https://doi.org/10.1016/S1385-8947(98)00147-8
J. Bertrand, C. Xuereb. “Some aspects of CFD on mixing: Industrial applications”. Proc. 3rd. Int. Symp. on Mixing in Industrial Processes. Soc. Chem. Eng. Japan. Tokyo. 1999. pp. 1-12.
V.V. Ranade, J.B. Joshi. “Flow generated by disk turbine: Parte I Experimental”. Chem. Eng. Res. Des. Vol. 68. 1990. pp. 19-33.
A. Bakker, H.E.A. van den Akker. “Single-Phase flow in stirred reactors”. Chem. Eng. Res. Des. Vol. 72. 1994. pp. 583-593.
K. Rutherford, K.C. Lee, S.M.S. Mahomoudi, M. Yianneskis. “The influence of Rushton Impeller blade and disk thickness on the mixing characteristics of stirred vessels”. Chem. Eng. Res. Des. Vol. 74. Part A. 1996. pp. 369-378.
K.C. Lee, M. Yianneskis. “The extent of periodicity of the flow in vessels stirred by Rushton impellers”. AIChE Symposium series. Vol. 90. 1994. pp. 5-18.
M. Schafer, M. Hofken, F. Durst. “Detailed LDV measurements for visualization of the flow field within a stirred-tank reactor equipped with a Rushton Turbine”. Chem. Eng. Res. Des. Vol. 75. 1997. pp. 729-736. DOI: https://doi.org/10.1205/026387697524399
V.P. Mishra, J.B. Joshi. “Flow generated by a disc turbine: Part III: Effect of impeller diameter, impeller location and comparison with other radial flow turbine”. Chem. Eng. Res. Des. Vol. 71. 1993. pp. 563-573.
P. Mavros, P. Baudou. “Quantification of the performance of agitators in stirred vessels: Definition and use of an agitation index”. Chem. Eng. Res. Des. Vol. 75. 1997. pp. 737-745. DOI: https://doi.org/10.1205/026387697524407
J.J. Derksen, J. H. Stockmann, H.E.A. van den Akker. “Three-dimensional laser Doppler anemometry in a stirred tank”. Récents Prog. Génie Procédés. Vol 11. 1997. pp. 81-88.
P. Mavros, C. Xuereb, J. Bertrand. “Determination of 3-D flow fields in agitated vessels by laser-doppler velocimetry: Use and interpretation for RMS velocities”. Chem. Eng. Res. Des. Vol. 76. 1998. pp. 223-233. DOI: https://doi.org/10.1205/026387698524640
P. Mavros, C. Xuereb, J. Bertrand. “Determination of 3-D flow fields in agitated vessels by laser-Doppler velocimetry: Effect of impeller type and liquid viscosity on liquid flow patterns”. Chem. Eng. Res. Des. Vol. 74. 1996. pp. 658-668.
K.N. Dyster, E. Koutsakos, Z. Jaworski, A.W. Nienow. “An LDA study of the radial discharge velocities generated by a Rushton turbine: Newtonian Fluids, Re 5”. Chem. Eng. Res. Des. Vol. 71. 1993. pp. 11-23.
R. Escudié, A. Liné, M. Roustan. “Turbulent macroscale in the impeller stream of a Rushton turbine”. Proc. 10th Europ. Conf. on Mixing. Elsevier. New York. 2000. pp. 353-360. DOI: https://doi.org/10.1016/B978-044450476-0/50045-5
E.S. Wernersson, C. Trägardh. “Turbulence characteristics in turbine-agitated tanks of different sizes and geometrics”. Chem. Eng. J. Vol. 70. 1998. pp. 37-45. DOI: https://doi.org/10.1016/S1385-8947(98)00071-0
S. Michelet, M. Mahouast, A. Kemoun, J. Mallet. “Turbulence in the discharge of a Rushton turbine and Taylor’s hypothesis. Récents Prog. Génie Procédés. Vol. 11. 1997. pp. 89-96.
R. Escudié, A. Liné. “Experimental analysis of hydrodynamics in a radially agitated tank”. AIChEJ. Vol. 49. 2003. pp. 585- 603. DOI: https://doi.org/10.1002/aic.690490306
R. Escudié, D. Bouyer, A. Liné. “Characterization of trailing vortices generated by a Rushton turbine” AIChE J. Vol. 50. 2004. pp. 75-86. DOI: https://doi.org/10.1002/aic.10007
S.M. Kresta, G. Zhou. “Distribution of energy between convective and turbulent flow for three frequently used impellerse”. Chem. Eng. Res. Des. Vol. 74. 1996. pp. 379-389.
S. Baldi, M. Yianneskis. “On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements”. Chem. Eng. Sci. Vol. 59. 2004. pp. 2659- 2671. DOI: https://doi.org/10.1016/j.ces.2004.03.021
V.T. Roussinova, B. Grgic, S.M. Kresta. “Study of Macro-Instabilities in Stirred Tanks Using a Velocity Decomposition Technique”. Chem. Eng. Res. Des. Vol. 78. 2000. pp. 1040-1052. DOI: https://doi.org/10.1205/026387600528157
L. Nikiforaki, G. Montante, K.C. Lee, M. Yianneskis. “On the origin, frequency and magnitude of macroinstabilities of the flows in stirred vessels”. Chem. Eng. Sci. Vol. 58. 2003. pp. 2937-2949. DOI: https://doi.org/10.1016/S0009-2509(03)00152-0
C. Galletti, A. Paglianti, K.C. Lee, M. Yianneskis. “Reynolds number and impeller diameter effects on instabilities in stirred vessels”. AIChE J. Vol. 50. 2004. pp. 2050-2063. DOI: https://doi.org/10.1002/aic.10236
P. Hasal, I. Fořt, J. Kratěna. “Force Effects of the Macroinstability of Flow Pattern on Radial Baffles in a Stirred Vessel with Pitched-blade and Rushton Turbine Impellers”. Chem. Eng. Res. Des. Vol. 82. 2004. pp. 1268-1281. DOI: https://doi.org/10.1205/cerd.82.9.1268.44169
J. Fan, Q. Rao, Y. Wang, W. Fei. “Spatio-temporal analysis of macro-instability in a stirred vessel via digital particle image velocimetry (DPIV)”. Chem. Eng. Sci. Vol. 59. 2004. pp. 1863-1873. DOI: https://doi.org/10.1016/j.ces.2004.01.039
R.S. Cherry, E.L. Aloi. “Cellular response to agitation characterized by energy dissipation at the impeller tip”. Chem. Eng. Sci. Vol. 51. 1996. pp. 1523-1529. DOI: https://doi.org/10.1016/0009-2509(95)00307-X
V.P. Mishra, J.B. Joshi. “Flow generated by a disc turbine: Part III: Effect of impeller diameter, impeller location and comparison with other radial flow turbine”. Chem. Eng. Res. Des. Vol. 71. 1993. pp. 563-573.
K. Ng, N.G. Fentiman, K.C. Lee, M. Yianneskis. “Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller”. Chem. Eng. Res. Des. Vol. 76. 1998. pp. 737-747. DOI: https://doi.org/10.1205/026387698525315
D. García-Cortés, E. Ferrer, E. Barberà. “Hydrodynamic characterization of the flow induced b a four-bladed
disk-style turbine”. Chem. Eng. Res. Des. Vol. 79. 2001. pp. 269-273. DOI: https://doi.org/10.1205/026387601750281798
V.P. Mishra, J.B. Joshi. “Flow generated by a disc turbine: Part IV: Multiple impellers”. Chem. Eng. Res. Des. Vol. 72. 1994. pp. 657-668.
S.M.S. Mahmoudi. “Velocity and mixing characteristics of stirred vessels with two impellers”. Ph. D. Thesis. University of London, England. 1994.
K. Rutherford, K.C. Lee, S.M.S. Mahmoudi, M. Yianneskis. “Hydrodynamics characteristics of Dual Rushton Impeller stirred vessels”. AIChE J. Vol 42. 1996. pp. 332-346. DOI: https://doi.org/10.1002/aic.690420204
D. García-Cortés “Contribución al estudio de la hidrodinámica y la transferencia de masa en reactores tipo tanque agitado mediante un enfoque global y local en sistemas gas-líquido”. Ph. D. Thesis. INP-ENSIACET, Toulouse, France. 2003.
C. Galletti, E. Brunazzi, M. Yianneskis, A. Paglianti. “Spectral and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel”. Chem. Eng. Sci. Vol 58. 2003. pp. 3859- 3875. DOI: https://doi.org/10.1016/S0009-2509(03)00230-6
Y.Q. Cui, R.G.J.M. van der Lans, K.Ch.A.M. Luyben. “Local power uptake in gas-liquid systems with single and multiple Rushton turbines”. Chem. Eng. Sci. Vol. 51. 1996. pp. 2631-2636. DOI: https://doi.org/10.1016/0009-2509(96)00128-5
J.H. Rushton, E.W. Costich, H.J. Everett. “Power characteristics of mixing impellers. Part I”. Chem. Eng. Pro. Vol. 46. 1950. pp. 395-404.
P. Seichter. “Investigation of turbine agitators for flowthrough floculation chambers”. Int. Chem. Eng. Vol. 16. 1976. pp. 668-680.
W. Bujalski, A.W. Nienow, S. Chatwin, M. Cooke. “The dependency on scale of power numbers of Rushton dick turbines”. Chem. Eng. Sci. Vol. 42. 1987. pp. 317-326. DOI: https://doi.org/10.1016/0009-2509(87)85061-3
R.L. Bates, P.L. Fondy, R.R. Corpstein. “An examination of some geometric parameters of impeller power”. Ind. Eng. Chem. Proc. Des. & Dev., Vol. 2. 1963. pp. 310-314. DOI: https://doi.org/10.1021/i260008a011
J.Y. Oldshue “Fluid Mixing Technology”. Ed McGraw-Hill Publ. Co. New Cork. 1983. pp. 64-67.
A.W. Nienow, D. Miles. “Impeller power numbers in closed vessels”. Ind. Eng. Chem. Proc. Des. Dev. Vol. 10. 1971. pp. 41-43. DOI: https://doi.org/10.1021/i260037a007
J. Karcz, M. Major. “An effect of a baffle height on the power consumption in an agitated vessel”. Chem. Eng. Processing. Vol. 37. 1998. pp. 249-256. DOI: https://doi.org/10.1016/S0255-2701(98)00033-6
F. Strek, H. Lacki, J. Karcz. “Power requirements of high-speed stirrers in mixers of various diameters”. Prace Nauk. Politech. Szczecin. Vol. 273. 1984. pp. 148-150.
J.H. Rushton, E.W. Costich, H.J. Everett. “Power characteristics of mixing impellers. Part II”. Chem. Eng. Prog. Vol. 46(9). 1950. pp. 467-476.
P.H. Calderbank, M.B. Moo-Young. “The power characteristics of agitators for the mixing of Newtonian and non-newtonian fluids”. Trans. Instn. Chem. Engrs. Vol 39. 1961. pp. 337-347.
R.-V. Roman, M. Gavrilescu, V. Efimov. “Evaluation of power consumption por newtonian system mixing with a various number of Rushton turbines”. Hung. J. Ind. Chem. Vol. 20. 1992. pp. 155-160.
C. Baudou. Agitation par de systemes axiaux simples ou multi-etages. Obtention de l’hydrodynamique par volcimetrie laser a effet Doppler. Ph. D. Thèsis, INP-ENSIGC. Toulouse. 1997.
J. Costes, J.P. Couderc. “Study by laser doppler anemometry of the turbulent flow induced by a Rushton turbine in a stirred tank: influence of the size of the units-I. Mean flow and turbulence”. Chem. Eng. Sci. Vol. 43. 1988. pp. 2751-2764. DOI: https://doi.org/10.1016/0009-2509(88)80018-6
J. Medek, I. Fort. “Mixing in vessel with eccentrical mixer”. Proc. 5th Europ. Conf. on Mixing. BHRA press. Cranfield. 1985. pp. 263-271.
V. Singh, A. Constantinides, R. Fuchs. “A new method for fermentor scale - up incorporating both mixing and mass transfer effects - I. Theoretical basis”. En: C. S. Ho, J.Y. Oldshue. (Eds). Biotechnology process: Scale-up and mixing. AIChE. New York. 1987. pp. 200-214.
B. Mayr, E. Nagy, P. Horvat, A. Moser. “Modelling of mixing and simulation of its effect on glutamic acid fermentation”. Chem. Biochem. Eng. Q. Vol. 7. 1993. pp. 31-42.
Y.Q. Cui, R.G.J.M. van der Lans, H.J. Noorman, K.Ch. A.M. Luyben. “Compartment mixing model for stirred reactors with multiple impellers”. Chem. Eng. Res. Des. Vol. 74. 1996. pp. 261-271.
S.S. Alves, J.M.T. Vasconcelos, J.M. Barata. “Alternative compartment models of mixing in tall tanks agitated by multi-Rushton turbines”. Chem. Eng. Res. Des. Vol. 75. 1997. pp. 334-338. DOI: https://doi.org/10.1205/026387697523642
J.M.T. Vasconcelos, S. Alves, A.W. Nienow, W. Bujalski. “Scale-up of mixing in gassed multi-turbine agitated vessels”. Can. J. Chem. Eng. Vol. 76. 1998. pp. 398-404. DOI: https://doi.org/10.1002/cjce.5450760308
S.S. Alves, C.I. Maia, J.M.T. Vasconcelos. “Experimental and modelling study of gas dispersion in a double
turbine stirred tank”. Chem. Eng. Sci. Vol. 57. 2002. pp. 487-496. DOI: https://doi.org/10.1016/S0009-2509(01)00400-6
B. Mayr, E. Nagy, P. Horvat, A. Moser. “Scale-up on basis of structured mixing models: A new concept”. Biotech. Bioengn. Vol. 43. 1994. pp. 195-206. DOI: https://doi.org/10.1002/bit.260430303
J.A.M. Kuipers, W.P.M. Swaaij. “Application of computational fluid dynamics to chemical reaction engineering”. Reviews in Chem. Eng. Vol. 13(3). 1997.pp. 2-118. DOI: https://doi.org/10.1515/REVCE.1997.13.3.1
Z. Jaworski, K. N. Dyster, I.P.T. Moore, A.W. Nienow, M.L. Wyszynski. “The use of angle resolved LDA data to compare two differential turbulence models applied to sliding mesh CFD flow simulations in a stirred tank”. Récents Prog. Génie Procédés. Vol. 11(51). 1997. pp. 187-194.
G.K. Patterson, R.S. Brodkey. “Turbulence in mixing operations: Theory and application to mixing and reaction”. Ed Academic Press. New York. 1975. pp. 223-233.
R. Mann, P.P. Mavros, J.C. Middleton. “A structured stochastic flow model for interpreting flow-follower data from a stirred vessel”. Chem. Eng. Res. Des. Vol. 59. 1981. pp. 271-278.
R. Mann, P. Mavros. “Analysis of unsteady tracer dispersion and mixing in a stirred vessels using interconnected networks of ideal flow zones”. Proc. 4th Europ. Conf. on Mixing. BHRA Fluid Engineering. Cranfield. 1982. pp. 35-47.
R. Mann, P. Knysh, E.A. Rasekoala, M. Didari. “Mixing in a closed stirred vessel: use of network of zones to interpret mixing curves acquired by fibre – optic photometry”. Inst. Chem. Eng. Symp. Ser. Vol. 108. 1987. pp. 49-63.
R. Mann, P. Ying, K. Baker, R.B. Edwards. “Mixing of inert and reactive tracers in a twin impeller stirred vessel”. AIChE Symp. Ser. Vol. 89(293). 1993. pp. 16-20.
R. Mann. “Gas-liquid stirred vessel mixers: towards a unified theory based on networks-of-zones”. Chem. Eng. Res. Des. Vol. 64. 1986. pp. 1-23.
R. Mann, L.A. Hackett. “Fundamentals of gas-liquid mixing in a stirred vessel: an analysis of using networks of backmixed zones”. Proc. 6th Eur. Conf. on Mixing. BHRA Fluid Eng. Cranfield. 1988. pp. 321-328.
A. Brucato, L. Rizzuti. “The application of the networksof-zones model to solid –liquid suspensions”. Proc. 6th Eur. Conf. on Mixing. BHRA Fluid Eng. Cranfield. 1988. pp. 273-280.
A. Brucato, F. Magelli, M. Nocentini, L. Rizzuti. “An application of the network of zones model to solids
suspension in multiple impeller mixers”. Chem. Eng. Res. Des. Vol 69. 1991. pp. 43-52.
Y.D. Wang, R. Mann. “Mixing in a stirred semi-batch reactor: partial segregation for a pair of competing reactions analysed via network of zones”. IChemE Symp. Series. Vol 121. 1990. pp. 241-257.
Y.D. Wang, R. Mann. “Partial segregation in stirred batch reactors: Effect of Scale-up on the yield of a pair of Competing Reactions”. Chem. Eng. Res. Des. Vol. 70. 1992. pp. 282-290.
R. Mann, A.M. El-Hamouz. “Imperfect mixing and paradoxical product distributions for a stirred semibatch reactor”. AIChE Symp. Ser. Vol. 88(286). 1991. pp. 1-5.
R. Mann, A.M. El-Hamouz. “A product distribution paradox on scaling up a stirred batch reactor”. AIChEJ. Vol. 41. 1995. pp. 855-867. DOI: https://doi.org/10.1002/aic.690410413
H.V. Hristov, R. Mann. “Fluid Mixing and the Safe Quenching of a Runaway Reaction in a Stirred Autoclave”. Chem. Eng. Res. Des. Vol 80. 2002. pp. 872-879. DOI: https://doi.org/10.1205/026387602321143417
E. Wabo, M. Kagoshima, R. Mann. “Batch Stirred Vessel Mixing Evaluated by Visualized Reactive Tracers and Electrical Tomography”. Chem. Eng. Res. Des. Vol. 82. 2004. pp. 1229-1236. DOI: https://doi.org/10.1205/cerd.82.9.1229.44159
R. Mann, D. Vlaev, V. Lossev, S.D. Vlaev, J. Zahradnik, P. Seichter. “A network of zones analysis of the fundamentals of gas liquid mixing in an industrial stirred bioreactor”. Récents Prog. Génie Procédés. Vol. 11(52). 1997. pp. 223-230.
D. Vlaev, R. Mann, V. Lossev, S.D.Vlaev, J. Zahradnik, P. Seichter. “Macromixing and streptomyces fradiae. Modelling oxygen and nutrient segregation in an industrial bioreactor”. Chem. Eng. Res. Des. Vol. 78. 2000. pp. 354-362. DOI: https://doi.org/10.1205/026387600527473
J. Zahradnik, R. Mann, M. FialovaH, D. Vlaev, S.D. Vlaev, V. Lossev, P. Seichter. “A network of zone analysis of mixing and mass transfer in three industrial bioreactors”. Chem. Eng. Sci. Vol 56. 2001. pp. 485-492. DOI: https://doi.org/10.1016/S0009-2509(00)00252-9
R. Mann, P. Ying, R.B. Edwards. “Application of 3-D network of zones mixing model to a stirred vessel”. IChemE Symp. Series. Vol. 136. 1994. pp. 317-324.
P.J. Holden, R. Mann. “Turbulent 3-D mixing in stirred vessel: correlation of a networks-of-zones image reconstruction approach with pointwise measurements”. IChemE Symp. Series. Vol. 140. 1996. pp. 167-179.
M. Rahimi, P.R. Senior, R. Mann. “Visual 3-D modelling of stirred vessel mixing for an inclined-blade impeller”. Chem. Eng. Res. Des. Vol 78. 2000. pp. 348-353. DOI: https://doi.org/10.1205/026387600527464
M. Rahimi, R. Mann. “Macro-mixing, partial segregation and 3-D selectivity fields inside a semi-batch stirred reactor”. Chem. Eng. Sci. Vol 56. 2001. pp. 763-769. DOI: https://doi.org/10.1016/S0009-2509(00)00287-6
F. Guillard, C. Trägard. “Modeling of the performance of industrial bioreactors with a dynamic microenviromental approach: A critical review”. Chem. Eng. Tech. Vol. 22. 1999. pp. 187-195. DOI: https://doi.org/10.1002/(SICI)1521-4125(199903)22:3<187::AID-CEAT187>3.0.CO;2-9
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.