Comparison of treatments for cellulose pulp from agro-industrial wastes from the Amazon region

Authors

DOI:

https://doi.org/10.17533/udea.redin.20230520

Keywords:

Amazonia, Biomass, Organic compounds, Distilled water, Mohr’s salt

Abstract

Agroindustrial waste (AIW) is a potential source of cellulose, which can be obtained through different treatments. In this study, we evaluated four delignification treatments (10% sodium hydroxide, 50% ethanol, distilled water, and 25% Mohr's salt) to obtain cellulose pulp from four Amazonian AIWs (banana peel, cassava peel, sugarcane bagasse, and rice husk). Our results showed that sodium hydroxide treatment had the highest lignin removal and increased cellulose content, while Mohr's salt treatment had the lowest cellulose yield and lignin removal. Banana peel and rice husk had the highest cellulose yield, while cassava peel had the lowest. Distilled water treatment at medium temperature had similar lignin removal and cellulose yield to the sodium hydroxide and ethanol treatments. Our findings suggest that AIWs have great potential as a source of cellulose and that these economical, simple, and eco-friendly treatments can be used to obtain high-purity cellulose from AIWs.

|Abstract
= 673 veces | PDF
= 242 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Grober Panduro-Pisco, Universidad Nacional de Ucayali

Professor, Environmental Sciences and Natural resources Department

Angie Stefani Amasifuen-Rengifo, Universidad Nacional de Uyacali

Student, Environmental Sciences and Natural Resources Department

Edwar Edinson Rubina-Arana, Universidad Nacional de Uyacali

Professor, Environmental and Natural Resources Conservation Department

David Leon-Moreno, Universidad Nacional de Uyacali

Professor, Environmental and Natural Resources Conservation Department

References

TerraGreen. (2019, Feb. 20,) Global waste-solvable problem as a renewable energy resource. [Online]. Available: https://tinyurl.com/5n7mjhf2

C. Zhou and Y. Wang, “Recent progress in the conversion of biomass wastes into functional materials for value-added applications,” Science and Technology of Advanced Materials, vol. 21, no. 1, Dec. 14, 2020. [Online]. Available: https://doi.org/10.1080/14686996.2020.1848213

H. Sánchez, W. Ponce, B. Brito, W. Viera, R. Baquerizo, and M. A. Riera, “Biofilms production from avocado waste,” Ingeniería y Universidad, vol. 25, Oct. 29, 2021. [Online]. Available: https://doi.org/10.11144/Javeriana.iued25.bpaw

S. Hecht, M. Schmink, R. Abers, E. Assad, B. Humphreys, and E. D. et al., “The amazon in motion: Changing politics, development strategies, peoples, landscapes, and livelihoods,” in Amazon Assessment Report 2021, Part II, C. Nobre, A. Encalada, and E. A. et al., Eds. United Nations Sustinable Development Solutions Network, 2021. [Online]. Available: https://doi.org/10.3929/ethz-b-000526184

A. Bhatnagar, M. Sillanpaa, and A. Witek-Krowiak, “Agricultural waste peels as versatile biomass for water purification – a review,” Chemical Engineering Journal, vol. 270, Jun. 15, 2015. [Online]. Available: https://doi.org/10.1016/j.cej.2015.01.135

E. J. Cho, L. T. P. Trinh, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresource Technology, vol. 298, Nov. 09, 2019. [Online]. Available: https://doi.org/10.1016/j.biortech.2019.122386

Y. A. Vargas-Corredor and L. I. Pérez-Pérez, “Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente,” Revista Facultad de Ciencias Básicas, vol. 1, no. 1, Nov. 09, 2019. [Online]. Available: https://doi.org/10.18359/rfcb.3108

A. Alokika, A. Kumar, V. Kimar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” International Journal of Biological Macromolecules, vol. 169, Dec. 29, 2020. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2020.12.175

L. Moreno-Escandón, D. Perea-Soto, J. Soto-Paz, P. Torres-Lozada, and L. F. Marmolejo-Rebellón, “Improvement of biowaste composting by addition of sugarcane filter cake as an amendment material,” Ingeniería y Universidad, vol. 26, Apr. 04, 2022. [Online]. Available: https://doi.org/10.11144/Javeriana.iued26.ibca

Z. Shamsollahi and A. Partovinia, “Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review,” Journal of Environmental Management, vol. 246, Jun. 08, 2019. [Online]. Available: https://doi.org/10.1016/j.jenvman.2019.05.145

Z. Anwar, M. Gulfraz, and M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review,” Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, Feb. 28, 2014. [Online]. Available: https://doi.org/10.1016/j.jrras.2014.02.003

K. Kucharska, P. Rybarczyk, I. Holowacz, R. Lukajtis, M. Glinka, and M. Kaminski, “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, vol. 23, no. 11, Nov. 10, 2018. [Online]. Available: https://doi.org/10.3390/molecules23112937

J. M. Fuertez-Córdoba, J. C. Acosta-Pavas, and A. A. Ruiz-Colorado, “Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups,” Dyna, vol. 88, no. 218, Jul. 06, 2021. [Online]. Available: https://doi.org/10.15446/dyna.v88n218.92055

E. Raja-Sathendra, R. Praveenkumar, B. Gurunathan, S. Chozhavendhan, and M. Jayakumar, “Chapter 5 - refining lignocellulose of second-generation biomass waste for bioethanol production,” Biofuels and Bioenergy, Oct. 22, 2021. [Online]. Available: https://doi.org/10.1016/B978-0-323-85269-2.00016-2

S. Gon-Wi, E. Jin-Cho, D.-S. Lee, S. Jung-Lee, Y. Ju-Lee, and H. Bae, “Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials,” Biotechnology for Biofuels, vol. 8, no. 228, Dec. 24, 2015. [Online]. Available: https://doi.org/10.1186/s13068-015-0419-4

J. G. Reales, H. I. Castaño, and J. E. Zapata, “Evaluación de tres métodos de pretratamiento químico sobre la deslignificación de tallos de yuca,” Información tecnológica, vol. 27, no. 3, Jun. 2016. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642016000300003

J. H. Borrero-López, “Obtención de fibra de celulosa industrialmente útil para la elaboración de papel a partir de residuos de cosecha agrícola utilizando el proceso diferencial oxidativo ssohe,” Presentation, Grupo Físicoquímica de Bio y Nanomateriale, Universidad del Valle, Cali, Colombia, 2017.

C. Ngoc-Dao, E. Mupondwa, L. Tabil, X. Li, E. C. Castellanos-López, and L. T. et al., “A review on techno-economic analysis and lifecycle assessment of second generation bioethanol production via biochemical processes,” presented at CSBE/SCGAB 2018 Annual Conference, Guelph, ON, 2018. [Online]. Available: https://library.csbe-scgab.ca/docs/meetings/2018/CSBE18215.pdf

E. Damilano-Dutra, F. Almeida-Santos, B. R. Alves-Alencar, A. L. Silva-Reis, R. de Fatima-Rodrigues de Souza, K. A. da Silva-Aquino, M. A. Morais-Jr, and R. S. Cezar-Menezes, “Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives,” Biomass Conversion and Biorefinery, vol. 8, Jul. 06, 2017. [Online]. Available: https://doi.org/10.1007/s13399-017-0277-3

A. M. Beltran, “Obtencion para carton de la madera y corteza de eucalyptus globulus labill,” Undergraduate thesis, Universidad Nacional Agraria La Molina, Lima, PE, 1996.

S. Ochi, “Mechanical properties of kenaf fibers and kenaf/pla composites,” Mechanics of Materials, vol. 40, no. 4-5, Oct. 27, 2007. [Online]. Available: https://doi.org/10.1016/j.mechmat.2007.10.006

S. Palacios, H. A. Ruiz, R. Ramos-Gonzalez, J. Martínez, E. Segura, and M. A. et al., “Mechanical properties of kenaf fibers and kenaf/pla composites,” Food Science and Biotechnology, vol. 26, Jul. 24, 2017. [Online]. Available: https://doi.org/10.1007/s10068-017-0128-9

L. de la Cruz-Velasco, J. Chamorro-Mejía, and C. Córdoba-Cely, “Characterization physico-chemical and mechanical of 4 vegetable fibers used as artisanal raw materials in the department of nariño,” Dyna, vol. 88, no. 216, Dec. 16, 2020. [Online]. Available: http://doi.org/10.15446/dyna.v88n216.87958

N. Abu-Bakar, N. Othman, Z. Murni-Yunus, W. A. Hamood-Altowayti, A. Al-Gheethi, and S. M.-A. et al., “Nipah (musa acuminata balbisiana) banana peel as a lignocellulosic precursor for activated carbon: characterization study after carbonization process with phosphoric acid impregnated activated carbon,” Biomass Conversion and Biorefinery, Sep. 24, 2021. [Online]. Available: https://doi.org/10.1007/s13399-021-01937-5

W. Astuti, Megawati, M. A. Mahardhika, D. A. Putri, M. Rohman, and M. F. S. et al., “Application of kepok banana peel activated carbon prepared by conventional and microwave heating for malachite green adsorption,” Materials Science and Engineering, vol. 625, Sep. 24, 2019. [Online]. Available: https://doi.org/10.1007/s13399-021-01937-5

D. Torres-Jaramillo, S. P. Morales-Vélez, and J. C. Quintero-Díaz, “Evaluación de pretratamientos químicos sobre materiales lignocelulósicos,” Ingeniare Revista chilena de ingeniería, vol. 25, no. 4, Dec. 2017. [Online]. Available: http://dx.doi.org/10.4067/S0718-33052017000400733

L. L. nd D. Fasce, V. A. Álvarez, and P. M. Stefani, “Nanocellulose from rice husk following alkaline treatment to remove silica,” BioResources, vol. 6, no. 2, 2011. [Online]. Available: https://tinyurl.com/yr9zzex7

A. L. M. P. Leite, C. Dalcin-Zanon, and F. C. Menegalli, “Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings,” Carbohydrate Polymers, vol. 157, Feb. 10, 2017. [Online]. Available: https://doi.org/10.1016/j.carbpol.2016.10.048

R. Maryana, D. Ma’rifatun, A. I. Wheni, K. W. Striyo, and W. Angga-Rizal, “Alkaline pretreatment on sugarcane bagasse for bioethanol production,” Energy Procedia, vol. 47, Feb. 04, 2014. [Online]. Available: https://doi.org/10.1016/j.egypro.2014.01.221

S. Niju and M. Swathika, “Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production,” Biocatalysis and Agricultural Biotechnology, vol. 20, Jul. 22, 2019. [Online]. Available: https://doi.org/10.1016/j.bcab.2019.101263

Z. Talha, W. Ding, E. Mehryar, M. Hassan, and J. Bi, “Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production,” BioMed Research International, vol. 2016, Sep. 21, 2016. [Online]. Available: https://doi.org/10.1155/2016/8650597

N. Herlina-Sari and I. N. G. Warda, “The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber,” Oriental Journal of Chemistry, vol. 33, no. 6, 2017. [Online]. Available: http://dx.doi.org/10.13005/ojc/330642

D. J. Bernier-Oviedo, J. A. Rincón-Moreno, J. F. Solanilla-Duqué, J. A. Muñoz-Hernández, and H. A. Váquiro-Herrera, “Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse,” Industrial Crops and Products, vol. 122, Jun. 14, 2018. [Online]. Available: https://doi.org/10.1016/j.indcrop.2018.06.012

J. C. C.S., N. George, and S. K. Narayanankutty, “Isolation and characterization of cellulose nanofibrils from arecanut husk fibre,” Carbohydrate Polymers, vol. 142, May. 20, 2016. [Online]. Available: https://doi.org/10.1016/j.carbpol.2016.01.015

T. Tiwa-Stanislas, J. Foba-Tendo, E. Beckely-Ojo, and O. Fayen-Ngasoh, “Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants,” Journal of Natural Fibers, vol. 119, no. 5, Jul. 20, 2020. [Online]. Available: https://doi.org/10.1080/15440478.2020.1787915

E. M. Cabascango, K. A. Arteaga-Chinche, A. R. Sánchez-Naranjo, B. F. Navarro-Merino, and C. R. Jácome-Pilco, “TÉcnicas de extracciÓn de celulosa en residuos agroindustriales,” Pertinencia Académica, vol. 5, no. 3, Jul-Sep 2021. [Online]. Available: https://revistas.utb.edu.ec/index.php/rpa/article/view/2603

J. Gabhane, S. Prince-William, A. Gadhe, R. Rath, A. Narayan-Vaidya, and S. Wate, “Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication,” Waste Management, vol. 34, no. 2, Feb. 2014. [Online]. Available: https://doi.org/10.1016/j.wasman.2013.10.013

S. G. Wi, E. J. Cho, D. Lee, S. J. Lee, Y. J. Lee, and H. J. Bae, “Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials,” Biotechnology for Biofuels, vol. 8, no. 228, Dec. 24, 2015. [Online]. Available: https://doi.org/10.1186/s13068-015-0419-4

H. S. Hafid, F. N. Omar, J. Zhu, and M. Wakisaka, “Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment,” Carbohydrate Polymers, vol. 260, Feb. 13, 2021. [Online]. Available: https://doi.org/10.1016/j.carbpol.2021.117789

M. E. Vallejos, M. D. Zambon, M. C. Area, and A. Curvelo, “Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification,” Industrial Crops and Products, vol. 65, Nov. 27, 2014. [Online]. Available: https://doi.org/10.1016/j.indcrop.2014.11.018

V. D. C. Correia, A. A. da S. Curvelo, K. Marabezi, A. E. F. D. S. Almeida, and H. Savastano-Junior, “Polpa celulÓsica de bambu produzida pelo processo etanol/Água para aplicaÇÕes de reforÇo,” Ciencia Forestal, vol. 25, no. 1, Mar. 2015. [Online]. Available: https://doi.org/10.5902/1980509817470

B. de Groot, J. E. G. V. Dam, and K. V. Riet, “Alkaline pulping of hemp woody core: Kinetic modelling of lignin, xylan and cellulose extraction and degradation,” Holzforschung, vol. 49, Sep. 17 2009. [Online]. Available: https://doi.org/10.1515/hfsg.1995.49.4.332

Downloads

Published

2023-05-09

How to Cite

Panduro-Pisco, G., Amasifuen-Rengifo, A. S., Rubina-Arana, E. E., & Leon-Moreno, D. (2023). Comparison of treatments for cellulose pulp from agro-industrial wastes from the Amazon region. Revista Facultad De Ingeniería Universidad De Antioquia, (110), 77–85. https://doi.org/10.17533/udea.redin.20230520