Comparación de tratamientos para pasta de celulosa de residuos agroindustriales de la región amazónica

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20230520

Palabras clave:

Amazonía, Biomasa, Compuestos de agua destilada, Sal de Mohr

Resumen

Los residuos agroindustriales (RAI) son una fuente potencial de celulosa, que puede obtenerse mediante diferentes tratamientos. En este estudio, evaluamos cuatro tratamientos de deslignificación (hidróxido de sodio al 10%, etanol al 50%, agua destilada y sal de Mohr al 25%) para obtener pulpa de celulosa a partir de cuatro RAI amazónicos (cáscara de banano, cáscara de yuca, bagazo de caña de azúcar y cascarilla de arroz). Los resultados muestran que el tratamiento con hidróxido de sodio tuvo la mayor remoción de lignina y aumentó el contenido de celulosa, mientras que el tratamiento con sal de Mohr tuvo el menor rendimiento de celulosa y remoción de lignina. La cáscara de plátano y la cáscara de arroz tuvieron el mayor rendimiento de celulosa, mientras que la cáscara de yuca tuvo el menor. El tratamiento con agua destilada a temperatura media tuvo una eliminación de lignina y un rendimiento de celulosa similares a los de los tratamientos con hidróxido de sodio y etanol. Nuestros resultados sugieren que los RAI tienen un gran potencial como fuente de celulosa y que estos tratamientos económicos, sencillos y ecológicos pueden utilizarse para obtener celulosa de gran pureza a partir de RAI.

|Resumen
= 673 veces | PDF (ENGLISH)
= 242 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Grober Panduro-Pisco, Universidad Nacional de Ucayali

Profesor, Facultad de Ciencias Forestales y Ambientales, Departamento de Conservación de Recursos Naturales

Angie Stefani Amasifuen-Rengifo, Universidad Nacional de Uyacali

Estudiante, Facultad de Ciencias Forestales y Ambientales. Departamento de Conservación de Recursos Naturales

Edwar Edinson Rubina-Arana, Universidad Nacional de Uyacali

Profesor, Facultad de Ciencias Forestales y Ambientales, Departamento de Conservación de Recursos Naturales

David Leon-Moreno, Universidad Nacional de Uyacali

Profesor, Facultad de Ciencias Forestales y Ambientales, Departamento de Conservación de Recursos Naturales

Citas

TerraGreen. (2019, Feb. 20,) Global waste-solvable problem as a renewable energy resource. [Online]. Available: https://tinyurl.com/5n7mjhf2

C. Zhou and Y. Wang, “Recent progress in the conversion of biomass wastes into functional materials for value-added applications,” Science and Technology of Advanced Materials, vol. 21, no. 1, Dec. 14, 2020. [Online]. Available: https://doi.org/10.1080/14686996.2020.1848213

H. Sánchez, W. Ponce, B. Brito, W. Viera, R. Baquerizo, and M. A. Riera, “Biofilms production from avocado waste,” Ingeniería y Universidad, vol. 25, Oct. 29, 2021. [Online]. Available: https://doi.org/10.11144/Javeriana.iued25.bpaw

S. Hecht, M. Schmink, R. Abers, E. Assad, B. Humphreys, and E. D. et al., “The amazon in motion: Changing politics, development strategies, peoples, landscapes, and livelihoods,” in Amazon Assessment Report 2021, Part II, C. Nobre, A. Encalada, and E. A. et al., Eds. United Nations Sustinable Development Solutions Network, 2021. [Online]. Available: https://doi.org/10.3929/ethz-b-000526184

A. Bhatnagar, M. Sillanpaa, and A. Witek-Krowiak, “Agricultural waste peels as versatile biomass for water purification – a review,” Chemical Engineering Journal, vol. 270, Jun. 15, 2015. [Online]. Available: https://doi.org/10.1016/j.cej.2015.01.135

E. J. Cho, L. T. P. Trinh, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresource Technology, vol. 298, Nov. 09, 2019. [Online]. Available: https://doi.org/10.1016/j.biortech.2019.122386

Y. A. Vargas-Corredor and L. I. Pérez-Pérez, “Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente,” Revista Facultad de Ciencias Básicas, vol. 1, no. 1, Nov. 09, 2019. [Online]. Available: https://doi.org/10.18359/rfcb.3108

A. Alokika, A. Kumar, V. Kimar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” International Journal of Biological Macromolecules, vol. 169, Dec. 29, 2020. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2020.12.175

L. Moreno-Escandón, D. Perea-Soto, J. Soto-Paz, P. Torres-Lozada, and L. F. Marmolejo-Rebellón, “Improvement of biowaste composting by addition of sugarcane filter cake as an amendment material,” Ingeniería y Universidad, vol. 26, Apr. 04, 2022. [Online]. Available: https://doi.org/10.11144/Javeriana.iued26.ibca

Z. Shamsollahi and A. Partovinia, “Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review,” Journal of Environmental Management, vol. 246, Jun. 08, 2019. [Online]. Available: https://doi.org/10.1016/j.jenvman.2019.05.145

Z. Anwar, M. Gulfraz, and M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review,” Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, Feb. 28, 2014. [Online]. Available: https://doi.org/10.1016/j.jrras.2014.02.003

K. Kucharska, P. Rybarczyk, I. Holowacz, R. Lukajtis, M. Glinka, and M. Kaminski, “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, vol. 23, no. 11, Nov. 10, 2018. [Online]. Available: https://doi.org/10.3390/molecules23112937

J. M. Fuertez-Córdoba, J. C. Acosta-Pavas, and A. A. Ruiz-Colorado, “Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups,” Dyna, vol. 88, no. 218, Jul. 06, 2021. [Online]. Available: https://doi.org/10.15446/dyna.v88n218.92055

E. Raja-Sathendra, R. Praveenkumar, B. Gurunathan, S. Chozhavendhan, and M. Jayakumar, “Chapter 5 - refining lignocellulose of second-generation biomass waste for bioethanol production,” Biofuels and Bioenergy, Oct. 22, 2021. [Online]. Available: https://doi.org/10.1016/B978-0-323-85269-2.00016-2

S. Gon-Wi, E. Jin-Cho, D.-S. Lee, S. Jung-Lee, Y. Ju-Lee, and H. Bae, “Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials,” Biotechnology for Biofuels, vol. 8, no. 228, Dec. 24, 2015. [Online]. Available: https://doi.org/10.1186/s13068-015-0419-4

J. G. Reales, H. I. Castaño, and J. E. Zapata, “Evaluación de tres métodos de pretratamiento químico sobre la deslignificación de tallos de yuca,” Información tecnológica, vol. 27, no. 3, Jun. 2016. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642016000300003

J. H. Borrero-López, “Obtención de fibra de celulosa industrialmente útil para la elaboración de papel a partir de residuos de cosecha agrícola utilizando el proceso diferencial oxidativo ssohe,” Presentation, Grupo Físicoquímica de Bio y Nanomateriale, Universidad del Valle, Cali, Colombia, 2017.

C. Ngoc-Dao, E. Mupondwa, L. Tabil, X. Li, E. C. Castellanos-López, and L. T. et al., “A review on techno-economic analysis and lifecycle assessment of second generation bioethanol production via biochemical processes,” presented at CSBE/SCGAB 2018 Annual Conference, Guelph, ON, 2018. [Online]. Available: https://library.csbe-scgab.ca/docs/meetings/2018/CSBE18215.pdf

E. Damilano-Dutra, F. Almeida-Santos, B. R. Alves-Alencar, A. L. Silva-Reis, R. de Fatima-Rodrigues de Souza, K. A. da Silva-Aquino, M. A. Morais-Jr, and R. S. Cezar-Menezes, “Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives,” Biomass Conversion and Biorefinery, vol. 8, Jul. 06, 2017. [Online]. Available: https://doi.org/10.1007/s13399-017-0277-3

A. M. Beltran, “Obtencion para carton de la madera y corteza de eucalyptus globulus labill,” Undergraduate thesis, Universidad Nacional Agraria La Molina, Lima, PE, 1996.

S. Ochi, “Mechanical properties of kenaf fibers and kenaf/pla composites,” Mechanics of Materials, vol. 40, no. 4-5, Oct. 27, 2007. [Online]. Available: https://doi.org/10.1016/j.mechmat.2007.10.006

S. Palacios, H. A. Ruiz, R. Ramos-Gonzalez, J. Martínez, E. Segura, and M. A. et al., “Mechanical properties of kenaf fibers and kenaf/pla composites,” Food Science and Biotechnology, vol. 26, Jul. 24, 2017. [Online]. Available: https://doi.org/10.1007/s10068-017-0128-9

L. de la Cruz-Velasco, J. Chamorro-Mejía, and C. Córdoba-Cely, “Characterization physico-chemical and mechanical of 4 vegetable fibers used as artisanal raw materials in the department of nariño,” Dyna, vol. 88, no. 216, Dec. 16, 2020. [Online]. Available: http://doi.org/10.15446/dyna.v88n216.87958

N. Abu-Bakar, N. Othman, Z. Murni-Yunus, W. A. Hamood-Altowayti, A. Al-Gheethi, and S. M.-A. et al., “Nipah (musa acuminata balbisiana) banana peel as a lignocellulosic precursor for activated carbon: characterization study after carbonization process with phosphoric acid impregnated activated carbon,” Biomass Conversion and Biorefinery, Sep. 24, 2021. [Online]. Available: https://doi.org/10.1007/s13399-021-01937-5

W. Astuti, Megawati, M. A. Mahardhika, D. A. Putri, M. Rohman, and M. F. S. et al., “Application of kepok banana peel activated carbon prepared by conventional and microwave heating for malachite green adsorption,” Materials Science and Engineering, vol. 625, Sep. 24, 2019. [Online]. Available: https://doi.org/10.1007/s13399-021-01937-5

D. Torres-Jaramillo, S. P. Morales-Vélez, and J. C. Quintero-Díaz, “Evaluación de pretratamientos químicos sobre materiales lignocelulósicos,” Ingeniare Revista chilena de ingeniería, vol. 25, no. 4, Dec. 2017. [Online]. Available: http://dx.doi.org/10.4067/S0718-33052017000400733

L. L. nd D. Fasce, V. A. Álvarez, and P. M. Stefani, “Nanocellulose from rice husk following alkaline treatment to remove silica,” BioResources, vol. 6, no. 2, 2011. [Online]. Available: https://tinyurl.com/yr9zzex7

A. L. M. P. Leite, C. Dalcin-Zanon, and F. C. Menegalli, “Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings,” Carbohydrate Polymers, vol. 157, Feb. 10, 2017. [Online]. Available: https://doi.org/10.1016/j.carbpol.2016.10.048

R. Maryana, D. Ma’rifatun, A. I. Wheni, K. W. Striyo, and W. Angga-Rizal, “Alkaline pretreatment on sugarcane bagasse for bioethanol production,” Energy Procedia, vol. 47, Feb. 04, 2014. [Online]. Available: https://doi.org/10.1016/j.egypro.2014.01.221

S. Niju and M. Swathika, “Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production,” Biocatalysis and Agricultural Biotechnology, vol. 20, Jul. 22, 2019. [Online]. Available: https://doi.org/10.1016/j.bcab.2019.101263

Z. Talha, W. Ding, E. Mehryar, M. Hassan, and J. Bi, “Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production,” BioMed Research International, vol. 2016, Sep. 21, 2016. [Online]. Available: https://doi.org/10.1155/2016/8650597

N. Herlina-Sari and I. N. G. Warda, “The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber,” Oriental Journal of Chemistry, vol. 33, no. 6, 2017. [Online]. Available: http://dx.doi.org/10.13005/ojc/330642

D. J. Bernier-Oviedo, J. A. Rincón-Moreno, J. F. Solanilla-Duqué, J. A. Muñoz-Hernández, and H. A. Váquiro-Herrera, “Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse,” Industrial Crops and Products, vol. 122, Jun. 14, 2018. [Online]. Available: https://doi.org/10.1016/j.indcrop.2018.06.012

J. C. C.S., N. George, and S. K. Narayanankutty, “Isolation and characterization of cellulose nanofibrils from arecanut husk fibre,” Carbohydrate Polymers, vol. 142, May. 20, 2016. [Online]. Available: https://doi.org/10.1016/j.carbpol.2016.01.015

T. Tiwa-Stanislas, J. Foba-Tendo, E. Beckely-Ojo, and O. Fayen-Ngasoh, “Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants,” Journal of Natural Fibers, vol. 119, no. 5, Jul. 20, 2020. [Online]. Available: https://doi.org/10.1080/15440478.2020.1787915

E. M. Cabascango, K. A. Arteaga-Chinche, A. R. Sánchez-Naranjo, B. F. Navarro-Merino, and C. R. Jácome-Pilco, “TÉcnicas de extracciÓn de celulosa en residuos agroindustriales,” Pertinencia Académica, vol. 5, no. 3, Jul-Sep 2021. [Online]. Available: https://revistas.utb.edu.ec/index.php/rpa/article/view/2603

J. Gabhane, S. Prince-William, A. Gadhe, R. Rath, A. Narayan-Vaidya, and S. Wate, “Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication,” Waste Management, vol. 34, no. 2, Feb. 2014. [Online]. Available: https://doi.org/10.1016/j.wasman.2013.10.013

S. G. Wi, E. J. Cho, D. Lee, S. J. Lee, Y. J. Lee, and H. J. Bae, “Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials,” Biotechnology for Biofuels, vol. 8, no. 228, Dec. 24, 2015. [Online]. Available: https://doi.org/10.1186/s13068-015-0419-4

H. S. Hafid, F. N. Omar, J. Zhu, and M. Wakisaka, “Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment,” Carbohydrate Polymers, vol. 260, Feb. 13, 2021. [Online]. Available: https://doi.org/10.1016/j.carbpol.2021.117789

M. E. Vallejos, M. D. Zambon, M. C. Area, and A. Curvelo, “Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification,” Industrial Crops and Products, vol. 65, Nov. 27, 2014. [Online]. Available: https://doi.org/10.1016/j.indcrop.2014.11.018

V. D. C. Correia, A. A. da S. Curvelo, K. Marabezi, A. E. F. D. S. Almeida, and H. Savastano-Junior, “Polpa celulÓsica de bambu produzida pelo processo etanol/Água para aplicaÇÕes de reforÇo,” Ciencia Forestal, vol. 25, no. 1, Mar. 2015. [Online]. Available: https://doi.org/10.5902/1980509817470

B. de Groot, J. E. G. V. Dam, and K. V. Riet, “Alkaline pulping of hemp woody core: Kinetic modelling of lignin, xylan and cellulose extraction and degradation,” Holzforschung, vol. 49, Sep. 17 2009. [Online]. Available: https://doi.org/10.1515/hfsg.1995.49.4.332

Publicado

2023-05-09

Cómo citar

Panduro-Pisco, G., Amasifuen-Rengifo, A. S., Rubina-Arana, E. E., & Leon-Moreno, D. (2023). Comparación de tratamientos para pasta de celulosa de residuos agroindustriales de la región amazónica. Revista Facultad De Ingeniería Universidad De Antioquia, (110), 77–85. https://doi.org/10.17533/udea.redin.20230520

Número

Sección

Artículo de investigación