Titania modifications with fluorine, sulfate and platinum for photochemical reduction of chromium (VI)

Authors

DOI:

https://doi.org/10.17533/udea.redin.20240304

Keywords:

F-TiO2, S-TiO2, Pt-F-TiO2, Pt-S-TiO2, Chromium, Photoreduction

Abstract

In this work, Titania was modified by sulfation or fluorination and platinum on the surface to improve the Cr (VI) reduction efficiency compared to the bare TiO2 material synthesized by the sol-gel method. The synthesized materials were characterized by XRD, SBET, UV-Vis DRS, XRF, TEM, FTIR, and XPS. The modifications led to higher stability in the Anatase phase and surface area of this semiconductor. The addition of F and Pt in TiO2 led to absorption increases in the visible region of the electromagnetic spectrum. A correlation between the new physicochemical properties obtained after TiO2 modification and the photocatalytic performance of this material was observed. The best result in chromium reduction was obtained using Pt-S-TiO2 as the photocatalyst; this material showed a suitable combination of surface area, high UV-Vis absorption, high hydroxylation, and the existence of Pt nanoparticles on the surface, which favors an increased electron-hole pair half-life. Different reaction parameters were also evaluated, which demonstrated that the best photocatalytic performance was obtained under an N2 atmosphere, a light intensity of 120 W/m2, and 2 hours of total reaction time. Likewise, it was noted that an increase in reaction time from 2 to 5 hours, had a detrimental effect on reducing Cr (VI) efficiency.

|Abstract
= 620 veces | PDF
= 103 veces|

Downloads

Author Biographies

Julie Joseane Murcia , Universidad Pedagógica y Tecnológica de Colombia

Professor Sciences Department

Mónica Sirley Hernández-Laverde, Universidad Nacional Abierta y a Distancia UNAD

PhD Student, Sciences Department

Ivan Alexander Correa-Camargo, Universidad Pedagógica y Tecnológica de Colombia

Graduate, Sciences Department

Hugo Alfonso Rojas-Sarmiento, Universidad Pedagógica y Tecnológica de Colombia

Professor, Sciences Department

José Antonio Navío , Universidad de Sevilla

Professor and Researcher, Inorganic Chemistry

Maria del Carmen Hidalgo-López, Universidad de Sevilla

Principal Researcher CSIC

References

F. Fu and Q. Wang, “Removal of heavy metal ions from wastewaters: a review,” Journal of Environmental Management, vol. 92, no. 3, Dec. 07, 2010. [Online]. Available: https://doi.org/10.1016/j.jenvman.2010.11.011

B. Henry, J. M. Vásquez, J. Moscoso-Cavallini, S. Oakley, L. Salguero, and P. Saravia. (2011) Tratamiento de aguas residuales domésticas en centroamérica. Acuerdo de cooperación USAID-CCAD. [Online]. Available: https://www.academia.edu/download/52717324/Manual_Aguas_residuales.pdf

R. Sarria-Villa, J. Gallo-Corredor, and R. Benítez-Benítez, “Tecnologías para remover metales pesados presentes en aguas. caso cromo y mercurio,” Journal de Ciencia e Ingeniería, vol. 12, no. 1, Jun. 11, 2020. [Online]. Available: https://doi.org/10.46571/JCI.2020.1.8

Y. Ibrahim, E. Abdulkarem, V. Naddeo, F. Banat, and S. Hasan, “Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater,” Science of The Total Environment, vol. 690, Jul. 03, 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.07.009

N. Qasem, R. Mohammed, and D. Lawal, “Removal of heavy metal ions from wastewater: A comprehensive and critical review,” npj Clean Water, vol. 4, no. 36, Jul. 08, 2021. [Online]. Available: https://doi.org/10.1038/s41545-021-00127-0

T. Kośla, M. Skibniewski, E. M. Skibniewska, I. Lasocka, and M. Kołnierzak, “Molybdenum, mo,” in Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments, E. Kalisińska, Ed. Switzerland, AG: Springer, Cham., 2019. [Online]. Available: https://doi.org/10.1007/978-3-030-00121-6_8

J. Hojman, J. Meichtry, M. Litter, and C. Coll, “Abatement of toxicity of effluents containing cr (vi) by heterogeneous photocatalysis. toxicity assessment by amphitox assay,” Ecotoxicology and Environmental Safety, vol. 122, Sep. 29, 2015. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2015.09.036

M. Litter, “Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis,” Pure and Applied Chemistry, vol. 87, no. 6, Jan. 10, 2015. [Online]. Available: https://doi.org/10.1515/pac-2014-0710

J. Liu, Q. Liu, J. Li, X. Zheng, Z. Liu, and X. Guan, “Photochemical conversion of oxalic acid on heterojunction engineered FeWO4/g-C3N4 photocatalyst for high-efficient synchronous removal of organic and heavy metal pollutants,” Journal of Cleaner Production, vol. 363, Jan. 09, 2022. [Online]. Available: https://doi.org/10.1016/j.jclepro.2022.132527

K. Quiton, M. Lu, and Y. Huang, “Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: A review,” Chemosphere, vol. 262, Sep. 18, 2020. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2020.128371

O. Sacco, J. Murcia, A. Lara, M. Hernández-Laverde, H. Rojas, J. Navío, and et al., “Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen,” Materials Science in Semiconductor Processing, vol. 107, Nov. 21, 2019. [Online]. Available: https://doi.org/10.1016/j.mssp.2019.104839

E. Kumar, T. Wang, H. Chi, and Y. Chang, “Hydrothermal and photoreduction synthesis of nanostructured α − Fe2O3/Ag urchins for sensitive SERS detection of environmental samples,” Applied Surface Science, vol. 604, Aug. 05, 2022. [Online]. Available: https://doi.org/10.1016/j.apsusc.2022.154448

P. Kajitvichyanukul, J. Ananpattarachai, and S. Pongpom, “Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process,” Science and Technology of Advanced Materials, vol. 6, no. 3-4, 2005. [Online]. Available: https://doi.org/10.1016/j.stam.2005.02.014

Y. Ku and I. Jung, “Photocatalytic reduction of cr (vi) in aqueous solutions by uv irradiation with the presence of titanium dioxide,” Water Research, vol. 35, no. 1, Nov. 14, 2000. [Online]. Available: https://doi.org/10.1016/S0043-1354(00)00098-1

R. Lakra, M. Kiran, and P. Korrapati, “Furfural mediated synthesis of silver nanoparticles for photocatalytic reduction of hexavalent chromium,” Environmental Technology & Innovation, vol. 21, Dec. 29, 2020. [Online]. Available: https://doi.org/10.1016/j.eti.2020.101348

R. Djellabi, F. Ghorab, S. Nouacer, A. Smara, and O. Khireddine, “Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO2 surface,” Materials Letters, vol. 176, Apr. 11, 2016. [Online]. Available: https://doi.org/10.1016/j.matlet.2016.04.090

K. Vikrant and S. Weon and K.H. Kim and M. Sillanpää, “Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants,” Applied Materials Today, vol. 23, Mar. 05, 2021. [Online]. Available: https://doi.org/10.1016/j.apmt.2021.100993

J. Mesa, M. Laverde, H. Sarmiento, M. Angulo, J. Navío, and M. López, “Cómo el precursor de Ti está involucrado en la eficacia de los materiales Pt-TiO2 en la fotodegradación de metil naranja,” Revista Facultad de Ciencias Básicas, vol. 16, no. 2, 2020. [Online]. Available: https://doi.org/10.18359/rfcb.5013

J. Murcia, M. Hernández-Laverde, H. Rojas, E. Muñoz, J. Navío, and M. Hidalgo, “Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 358, Mar. 21, 2018. [Online]. Available: https://doi.org/10.1016/j.jphotochem.2018.03.034

J. Murcia, A. Cely, H. Rojas, M. Hidalgo, and J. Navío, “Fluorinated and platinized titania as effective materials in the photocatalytic treatment of dyestuffs and stained wastewater coming from handicrafts factories,” Catalysts, vol. 9, no. 2, Feb. 14, 2019. [Online]. Available: https://doi.org/10.3390/catal9020179

G. Iervolino, V. Vaiano, J. Murcia, L. Rizzo, G. Ventre, G. Pepe, and et al., “Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts,” Journal of catalysis, vol. 339, Apr. 18, 2016. [Online]. Available: https://doi.org/10.1016/j.jcat.2016.03.032

Standard Test Methods for Chromium in Water, ASTM D1687-12, 2017.

W. G. Walter, “Standard methods for the examination of water and wastewater (11th ed.),” Home American Journal of Public Health (AJPH), vol. 51, no. 6, Jun. 01, 1961. [Online]. Available: https://doi.org/10.2105/AJPH.51.6.940-a

A. Kubiak, N. Varma, and M. Sikorski, “Insight into the led-assisted deposition of platinum nanoparticles on the titania surface: understanding the effect of leds,” Scientific Reports, vol. 12, Dec. 29, 2022. [Online]. Available: https://doi.org/10.1038/s41598-022-27232-5

H. Park, Y. Park, W. Kim, and W. Choi, “Surface modification of TiO2 photocatalyst for environmental applications,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 15, Nov. 15, 2012. [Online]. Available: https://doi.org/10.1016/j.jphotochemrev.2012.10.001

T. Yamaki, T. Umebayashi, T. Sumita, S. Yamamoto, M. Maekawa, A. Kawasuso, and et al., “Fluorine-doping in titanium dioxide by ion implantation technique,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 206, Feb. 12, 2003. [Online]. Available: https://doi.org/10.1016/S0168-583X(03)00735-3

A. Sobczyk-Guzenda, S. Owczarek, A. Wojciechowska, D. Batory, M. Fijalkowski, and M. Gazicki-Lipman, “Fluorine doped titanium dioxide films manufactured with the help of plasma enhanced chemical vapor deposition technique,” Thin Solid Films, vol. 650, Feb. 01, 2018. [Online]. Available: https://doi.org/10.1016/j.tsf.2018.01.060

P. Connor, K. Dobson, and A. McQuillan, “Infrared Spectroscopy of the TiO2/Aqueous Solution Interface,” Langmuir, vol. 15, no. 7, Mar. 02, 1999. [Online]. Available: https://doi.org/10.1021/la980855d

M. Hidalgo, M. Maicu, J. Navío, and G. Colón, “Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO2,” Applied Catalysis B: Environmental, vol. 81, no. 1-2, Dec. 08, 2007. [Online]. Available: https://doi.org/10.1016/j.apcatb.2007.11.036

J. J. Murcia-Mesa, C. G. Patiño-Castillo, H. A. Rojas-Sarmiento, J. A. Navío-Santos, M. del C. Hidalgo-López, and A. A. Botero, “Photocatalytic treatment based on TiO2 for a coal mining drainage,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 107, Oct. 13, 2021. [Online]. Available: https://doi.org/10.17533/udea.redin.20211063

M. Litter, “Heterogeneous photocatalysis: transition metal ions in photocatalytic systems,” Applied catalysis B: environmental, vol. 23, no. 2-3, Oct. 11, 1999. [Online]. Available: https://doi.org/10.1016/S0926-3373(99)00069-7

C. Wang, X. Du, J. Li, X. Guo, P. Wang, and J. Zhang, “Photocatalytic cr (vi) reduction in metal-organic frameworks: A mini-review,” Applied Catalysis B: Environmental, vol. 193, Apr. 19, 2016. [Online]. Available: https://doi.org/10.1016/j.apcatb.2016.04.030

E. Wahyuni, N. Aprilita, H. Hatimah, A. Wulandari, and M. Mudasir, “Removal of toxic metal ions in water by photocatalytic method,” American Chemical Science Journal, vol. 5, no. 2, Nov. 15, 2014. [Online]. Available: https://doi.org/10.9734/ACSJ/2015/13807

Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones, Resolución N° 0631, Under Ministerio de Ambiente y Desarrollo Sostenible, Bogotá, CO, 2015. [Online]. Available: https://www.minambiente.gov.co/wp-content/uploads/2021/11/resolucion-631-de-2015.pdf

Derogado por el art. 79, Decreto Nacional 3930 de 2019, salvo los arts. 20 y 21. Por el cual se reglamenta parcialmente el Título I de la Ley 09 de 1979, así como el Capítulo II del Título VI-Parte III - Libro II y el Título III de la Parte III Libro I del Decreto 2811 de 1974 en cuanto a usos del agua y residuos líquidos, Decreto 1594, Under Ministerio de Comercio, Industria y Turismo, Bogotá, CO, 1984. [Online]. Available: https://www.mincit.gov.co/ministerio/normograma-sig/procesos-de-apoyo/gestion-de-recursos-fisicos/decretos/decreto-1594-de-1984.aspx

Y. Sun, Z. Liu, Y. Zhang, L. Han, and Y. Xu, “Highly porous ZnO modified with photochemical deposition of silver nanostructure for ultra-sensitive triethylamine detection,” Sensors and Actuators B: Chemical, vol. 391, May. 25, 2023. [Online]. Available: https://doi.org/10.1016/j.snb.2023.134027

G. Chiarello, M. Dozzi, M. Scavini, J. Grunwaldt, and E. Selli, “One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production,” Applied Catalysis B: Environmental, vol. 160-161, May. 10, 2014. [Online]. Available: https://doi.org/10.1016/j.apcatb.2014.05.006

A. Sheoran and V. Sheoran, “Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review,” Minerals engineering, vol. 19, no. 2, Oct. 04, 2005. [Online]. Available: https://doi.org/10.1016/j.mineng.2005.08.006

Downloads

Published

2024-03-07

How to Cite

Murcia , J. J., Hernández-Laverde, M. S., Correa-Camargo, I. A., Rojas-Sarmiento, H. A., Navío , J. A., & Hidalgo-López, M. del C. (2024). Titania modifications with fluorine, sulfate and platinum for photochemical reduction of chromium (VI) . Revista Facultad De Ingeniería Universidad De Antioquia, (112), 86–97. https://doi.org/10.17533/udea.redin.20240304