Nopal extract and aloe vera to improve structural concrete exposed to saline environments
DOI:
https://doi.org/10.17533/udea.redin.20240514Keywords:
Aloe Vera, Nopal, corrosion resistance, mechanical properties, settlementAbstract
The objective of this study was to examine the impact of Nopal (N) and Aloe Vera (AV) on the physical and mechanical properties of structural concrete in saline environments. Concrete with a compressive strength of 245 kg/cm² was used, adding N and AV extracted from natural plants in the study region. A total of 130 cylindrical specimens, 40 prismatic specimens, and 10 fresh mix samples were analyzed. Percentages of Nopal (2%, 6%, and 10%), Aloe Vera (0.5%, 1.5%, and 3%), and mixed (2%N + 0.5%AV, 6%N + 1.5%AV, 10%N + 3%AV) were added based on the weight of the cement. The control group contained no additives. The best results were obtained with the 2%N + 0.5%AV samples, with the highest compressive strength of 443.4 kg/cm² at 28 days and 445.4 kg/cm² at 56 days, a tensile strength of 41.4 kg/cm² at 28 days, a flexural strength of 66.4 kg/cm² at 56 days and 70.9 kg/cm² at 90 days of curing. The corrosion resistance decreased by a maximum of 0.22 mm/year. The physical and mechanical properties were optimized with the proportion of 2%N + 0.5%AV, indicating that the mixing matrix becomes more compact, and the carbonation rate is reduced, resulting in greater strength and durability.
Downloads
References
Z. Jia, J. Aguiar, C. de Jesús, F. Castro, y S. Cunha, “Physical and mechanical properties of lightweight concrete with incorporation of ceramic mold casting waste,” Materialia, vol. 28, mayo 2023. [Online]. Disponible: https://doi.org/10.1016/j.mtla.2023.101765
J. Lu, J. Liu, H. Yang, X. Wan, J. Gao, et al.., “Experimental investigation on the mechanical properties and pore structure deterioration of fiber-reinforced concrete in different freeze-thaw media,” Construction and Building Materials, vol. 350, oct. 2022. [Online]. Disponible: https://doi.org/10.1016/j.conbuildmat.2022.128887
Y. Zheng, Y. Zhuo, Y. Zhang, y P. Zhang, “Mechanical properties and microstructure of nano-sio2 and basalt-fiber-reinforced recycled aggregate concrete,” Nanotechnology Reviews, vol. 11, no. 1, 2022. [Online]. Disponible: https://doi.org/10.1515/ntrev-2022-0134
G. Cement y C. Association, “Futuro del hormigón: Plan de trabajo hacia una industria del cemento y hormigón neutra en carbono para 2050 de la asociación mundial de productores de cemento y hormigón,” 2022. [Online]. Disponible: https://argosnewsroom.co/wp-content/uploads/2021/03/Hoja-de-ruta-Plan-de-ambici%C3%B3n-clim%C3%A1tica-2050_.pdf
K. Aspiotis, K. Sotiriadis, A. Ntaska, P. Mácova, E. Badogisnnis, et al.., “Durability assessment of self-healing in ordinary portland cement concrete containing chemical additives,” Construction and Building Materials, vol. 305, 2021. [Online]. Disponible: https://doi.org/10.1016/j.conbuildmat.2021.124754
R. O. Medupin, K. O. Ukoba, K. O. Yoro y T.-C. Jen, “Sustainable approach for corrosion control in mild steel using plant-based inhibitors: A review,” Materials Today Sustainability, vol. 22, 2023. [Online]. Disponible: https://doi.org/10.1016/j.mtsust.2023.100373
Conecta, “La corrosión en la industria,” 2019. [Online]. Disponible: https://www.conectaindustria.es/articulo/industria/la-corrosion-en-la-industria/20191203104435006124.html
S. Li, S. Yin, L. Wang, y X. Hu, “Mechanical properties of eccentrically compressed columns strengthened with textile-reinforced concrete under the coupled action of chloride salt corrosion and loading,” Applied Ocean Research, vol. 116, nov. 2021. [Online]. Disponible: https://doi.org/10.1016/j.apor.2021.102884
K. Mermerdaş y E. Güneyisi, “Effect of different types of calcined crude kaolins and high purity metakaolin on corrosion resistance of reinforcement in concretes: Experimental evaluation and analytical modeling,” Construction and Building Materials, vol. 382, 2023. [Online]. Disponible: https://doi.org/10.1016/j.conbuildmat.2023.131288
D. Liu, C. Wang, J. González-Libreros, T. Guo, J. Cao, et al.., “A review of concrete properties under the combined effect of fatigue and corrosion from a material perspective,” Construction and Building Materials, vol. 369, mar. 10, 2023. [Online]. Disponible: https://doi.org/10.1016/j.conbuildmat.2023.130489
O. Abdulfattah, I. H. Alsurakji, A. El-Qanni, M. Samaaneh, y M. Najjar, “Experimental evaluation of using pyrolyzed carbon black derived from waste tires as additive towards sustainable concrete,” Case Studies in Construction Materials, vol. 16, jun. 2022. [Online]. Disponible: https://doi.org/10.1016/j.cscm.2022.e00938
T. Wu, S. T. Ng, y J. Chen, “Deciphering the CO2 emissions and emission intensity of cement sector in china through decomposition analysis,” Journal of Cleaner Production, vol. 352, jul. 10, 2022. [Online]. Disponible: https://doi.org/10.1016/j.jclepro.2022.131627
C. Gi-Wook, H. J. Moon, Y. Ch Kim, W.-H. Hong, G.-Y. Jeon, et al.., “Evaluating recycling potential of demolition waste considering building structure types: A study in south korea,” Journal of Cleaner Production, vol. 256, mayo 20, 2020. [Online]. Disponible: https://doi.org/10.1016/j.jclepro.2020.120385
C. Singh y P. Priyaranjan, “Study on various properties of reinforced concrete – a review,” Materials Today: Proceedings, vol. 65, 2022. [Online]. Disponible: https://doi.org/10.1016/j.matpr.2022.03.193
P. Yalley y C. Kankam, “Compressive, flexural and corrosion permeability resistance properties of concrete with bauxite tailing as supplementary mineral admixtures,” Scientific African, vol. 18, 2023. [Online]. Disponible: https://doi.org/10.1016/j.sciaf.2022.e01409
R. Aslam, M. Mobin, S. Zehra, y J. Aslam, “A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments,” Journal of Molecular Liquids, vol. 364, 2022. [Online]. Disponible: https://doi.org/10.1016/j.molliq.2022.119992
H. Mahmood, H. Dabbagh, y A. Mohammed, “Comparative study on using chemical and natural admixtures (grape and mulberry extracts) for concrete,” Case Studies in Construction Materials, vol. 15, 2021. [Online]. Disponible: https://doi.org/10.1016/j.cscm.2021.e00699
A. Torres-Acosta y L. A. Díaz-Cruz, “Concrete durability enhancement from nopal (opuntia ficus-indica) additions,” Construction and Building Materials, vol. 243, 2020. [Online]. Disponible: https://doi.org/10.1016/j.conbuildmat.2020.118170
D. Shanmugavel, T. Selvaraj, R. Ramadoss, y S. Raneri, “Interaction of a viscous biopolymer from cactus extract with cement paste to produce sustainable concrete,” Construction and Building Materials, vol. 257, oct. 10, 2020. [Online]. Disponible: https://doi.org/10.1016/j.conbuildmat.2020.119585
A. Torres y P. González-Calderón, “Opuntia ficus-indica (ofi) mucilage as corrosion inhibitor of steel in CO2-contaminated mortar,” Materials, vol. 14, no. 5, 2021. [Online]. Disponible: https://doi.org/10.3390/ma14051316
J. A. Quispe-Granda, “Efectos del aloe-vera y mucílago de nopal en la resistencia a la compresión y permeabilidad del concreto f’c 280kg/cm²,” Piura, Perú, 2021. [Online]. Available: https://hdl.handle.net/20.500.12692/89121
C. Medina and G. Usúa, “Uso del aloe vera y opuntia ficus para mejorar las propiedades físicomecánicas del concreto de 245 kg/cm²,” Piura, Perú, 2021. [Online]. Available: https://hdl.handle.net/20.500.12692/86020
J. Domínguez and K. Rodríguez, “Adición de gel aloe vera en la resistencia a la compresión y porcentaje de absorción capilar de concreto f’c = 210 kg/cm²,” Piura, Perú, jan 2022. [Online]. Available: https://hdl.handle.net/20.500.12692/91118
Z. Aburto, “Influencia del aloe-vera sobre la resistencia a la compresión, infiltración, absorción capilar, tiempo de fraguado y asentamiento en un concreto estructural,” Piura, Perú, 2018. [Online]. Available: https://dspace.unitru.edu.pe/items/38da4569-449b-463b-8a19-a147de367dc4
S. Chandra, L. Eklund, and R. Villarreal, “Use of cactus in mortars and concrete,” Cement and Concrete Research, vol. 28, no. 1, Jan. 1998. [Online]. Available: https://doi.org/10.1016/s0008-8846(97)00254-8
Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias, “Hormigón (concreto) método de ensayo para la medición del asentamiento del concreto de cemento portland,” INDECOPI, Lima, Perú, Tech. Rep. NTP 339.035, Jan. 2009. [Online]. Available: https://tinyurl.com/4vp4t9pp
Dirección de Normalización, “Concreto método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas,” INACAL, Lima, Perú, Tech. Rep. NTP 339.034, Jan 2015. [Online]. Available: https://tinyurl.com/4r6kbu3f
Dirección de Normalización, “Concreto método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión diametral de una probeta cilíndrica,” INACAL, Lima, Perú, Tech. Rep. NTP 339.084, Jan. 2012. [Online]. Available: https://es.scribd.com/document/546156051/NTP-339-084-2012-2017
Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias, “Concreto método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo,” INDECOPI, Lima, Perú, Tech. Rep. NTP 339.078, Jan. 2012. [Online]. Available: https://www.udocz.com/apuntes/108486/ntp-339-078-ensayo-deflexion-pdf
Asociación Española de Normalización, “(Ensayos de hormigón endurecido) Fabricación y Curado de Probetas para Ensayos de Resistencia,” UNE, Madrid, Spain, Tech. Rep. UNE–En 12390–2, Jan. 2001. [Online]. Available: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0064329
Asociación Española de Normalización, “Normativa de los procedimientos y métodos de ensayos para determinar la resistencia a compresión del hormigón endurecido in situ,” UNE, Madrid, Spain, Tech. Rep. UNE–En 12504–1, Jan. 2021. [Online]. Available: https://tinyurl.com/sudp3zp2
Asociación Española de Normalización, “Determinación de la profundidad de carbonatación en un hormigón endurecido por el método de la fenolftaleína,” UNE, Madrid, Spain, Tech. Rep. UNE-EN 14630:2007, Jan. 2007. [Online]. Available: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0039887
Instituto Mexicano del Cemento y del Concreto A.C., “Proporcionamiento de mezclas,” Instituto Mexicano del Cemento y del Concreto A.C., Florida, ME, Tech. Rep. ACI 211.1, Jan. 2004. [Online]. Available: https://es.scribd.com/document/346207184/ACI-211-1-Proporcionamiento-de-Mezclas
Y. P. del Águila and Y. Plasencia, “Determinación de la resistencia a compresión de un concreto de alta resistencia utilizando mucilago de aloe barbadensis, san martín, 2020,” Tarapoto, Perú, 2021. [Online]. Available: http://repositorio.ucp.edu.pe/handle/UCP/1501
I. Hazarika, M. Gogoi, S. S. Bora, R. R. Borah, and et al.., “Use of a plant based polymeric material as a low cost chemical admixture in cement mortar and concrete preparations,” Journal of Building Engineering, vol. 15, Jan. 2018. [Online]. Available: https://doi.org/10.1016/j.jobe.2017.11.017
H. Herrera-Hernández, M. I. Franco-Toro, J. G. Miranda-Hernández, E. Hernández-Sánchez, and A. Espinoza-Vázquez, “Gel de aloe-vera como potencial inhibidor de la corrosión del acero de refuerzo estructural,” Avances en Ciencias e Ingeniería, vol. 6, no. 3, Jul-Sep. 2015. [Online]. Available: https://www.redalyc.org/articulo.oa?id=323642274002
R. M. D. Gutiérrez, C. Rodríguez, E. Rodrigúez, J. Torres, and S. Delvasto, “Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 48, Jun. 2009. [Online]. Available: https://revistas.udea.edu.co/index.php/ingenieria/article/view/16019/13888
E. Correa, S. Peñaranda, J. Castaño, and F. Echeverría, “Deterioro del concreto en ambientes urbanos de colombia,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 52, Jan-Mar. 2010. [Online]. Available: https://revistas.udea.edu.co/index.php/ingenieria/article/view/14801/12954
W. Aperador-Chaparro, D. Martínez-Bastidas, and J. H. Bautista-Ruiz, “Mechanical properties and absorption of chlorides in alkali activated slag concrete and exposed to carbonation,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 62, Jan-Mar. 2012. [Online]. Available: https://doi.org/10.17533/udea.redin.12479
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.