Resilience index for earth retaining systems in road infrastructure

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250369

Keywords:

sustainability, entropy, resilience, flexible retaining system, rigid retaining system

Abstract

The construction of roads often involves cuts and embankments, requiring the use of earth retaining walls. This study estimates a resilience index for these systems based on four fundamental criteria: robustness, redundancy, resourcefulness, and recovery. To achieve this, quantitative weightings based on a multicriteria analysis were applied to the service life of both a rigid and a flexible retaining wall systems near the city of Bogotá, Colombia, considering maximum surface acceleration and groundwater level variations. The results indicate a resilience index of 0.78 for the rigid system and 0.82 for the flexible system, indicating that the flexible system exhibits a higher resilience capacity. These findings can inform risk management policies and resource optimization strategies, ultimately reducing entropy during the design, construction, and operation phases of road projects.

|Abstract
= 56 veces | PDF
= 20 veces|

Downloads

Download data is not yet available.

Author Biographies

Jorge Arturo Pineda, Universidad Distrital Francisco José de Caldas

Professor at the Technological Faculty

Sherley Catheryne Larrañaga-Rubio, Universidad Politécnica de Madrid

PhD. Material Sciences (Roads, canals and ports Engineers)

Mario Guadalupe González-Pérez, Universidad de Guadalajara

Professor-Researcher, Department of Water and Energy Studies

References

ASCE, 2000., 2003. Prestandard and Commentary for the Seismic Rehabilitation of Building. FEMA 356. [WWW Document]. https://www.nehrp.gov/pdf/fema356.pdf

Basu, D., and Mina L., 2018. A Quantitative Framework for Sustainability and Resilience in Geotechnical Engineering. In A. Murali Krishna, A. Dey, and S. Sreedeep (Eds), Geotechnics for Natural and Engineered Sustainable Technologies. https://doi.org/10.1007/978-981-10-7721-0_24.

Tighnavard, B, A. and Marsono. A., 2020. Applying Multi-Criteria Decision-Making on Alternatives for Earth-Retaining Walls: LCA, LCC, and S-LCA. International Journal of Life Cycle Assessment 25 (11), 2140-2153. https://doi.org/10.1007/s11367-020-01825-6

Ali R., Amir H. Gandomi, Koorosh Azizi, and Charles V. Camp. 2022. Multi-Objective Optimization of Reinforced Concrete Cantilever Retaining Wall: A Comparative Study.” Structural and Multidisciplinary Optimization 65 (9). https://doi.org/10.1007/s00158-022-03318-6.

Bocchini, P. and Frangopol, D. M., 2011. Resilience-Driven Disaster Management of Civil Infrastructure. In M. Papadrakakis, M. Fragiadakis, V. Plevris (Eds.), Conference: Computational Methods in Structural Dynamics and Earthquake Engineering. [WWW Document]. https://congress.cimne.com/eccomas/proceedings/ compdyn2011/compdyn2011_full/473.pdf

Basu, D., Aditi M., and Anand J. P., 2014. Sustainability and Geotechnical Engineering: Perspectives and Review. Canadian Geotechnical Journal 52 (1), 96-113. https://doi.org/10.1139/cgj-2013-0120

Bonilla, Manuela, and Rincon Andrea. 2021. Resilience assessment in the road Sibate-San Miguel, Colombia. BSc Civil Engineering conclusion work. Universidad Distrital Francisco Jose de Caldas, Bogota. 145pp. In Spanish.

Pineda, J. A. 2019. “Weighting Factors for Estimating Resilience Index in Earth Retaining Systems in Colombia.” Postodoctoral Fellow at Research Center for Sustainable Engineering (CIDIS) Working Paper.

Broniewicz, E. and Ogrodnik, K., 2020. Multi-Criteria Analysis of Transport Infrastructure Projects. Transportation Research Part D: Transport and Environment 83, 1-15. https://doi.org/10.1016/j.trd.2020.102351.

Broniewicz, E. and Ogrodnik, 2021. A Comparative Evaluation of Multi-Criteria Analysis Methods for Sustainable Transport. Energies 14 (16), 5100. https://doi.org/10.3390/en14165100.

Bruneau M., Chang S. E., Eguchi, R. T., Lee, G. C., O’Rourke T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K. & Wallace, W. A. and Winterfeldt, D. V., 2003. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra 19 (4): 733–52. https://doi.org/10.1193/1.1623497.

Holling, C S., 1973. Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics 4 (1), 1–23. https://doi.org/10.1146/ANNUREV.ES.04.110173.000245.

Calvente, A., 2007. Resiliencia: un concepto clave para la sustentabilidad. UAIS Sustentabilidad, 1-4. [WWW Document]. http://sustentabilidad.uai.edu.ar/pdf/cs/UAIS-CS-200-003%20-%20Resiliencia.pdf

Pimm, S. L., 1984. The Complexity and Stability of Ecosystems. Nature 307 (5949). https://doi.org/10.1038/307321a0.

Howell, J. R., and Buckius, R. O., 1990. Principios de termodinámica para ingenieros. McGraw-Hill

González, M. G., 2018. Entropy and negentropy of private electric vehicles in urban systems: homeostasis of mobility in Mexico. DYNA, 85(206), pp. 171-177. https://doi.org/10.15446/dyna.v85n206.72509

Carnot, S., 1872. Reflexions sur la puissance motrice du feu et sur les machines propres dvelopper cette puissance. Annales scientifiques de l'.cole Normale Sup.rieure. Serie 2, Tome 1, 393-457. [WWW Document]. http://www.numdam.org/article/ASENS_1872 _2_1__393_0.pdf

Varadhan, R., 2015. Entropy and many avatars. Journal Mathematic Social Japan 67(4), 1845-1857. https://doi.org/10.2969/jmsj/06741845

Schrödinger, E., 1944. What is life?. University Press.

Shannon, C. and W. Weaver, W., 1949. The mathematical theory of communication. University of Illinois Press.

Bertalanffy, L. V.,1968. General system theory. Foundations, Development, Applications. George Braziller.

Kish, L. and Ferry D., 2017. Information entropy and thermal entropy: apples and oranges. Journal of Computational Electronics 1(8), 1- 8. [WWW Document]. https://arxiv.org/pdf/1706. 01459.pdf

Carpenter S., Walker B., Anderies J. M., and Nick N., 2001. From Metaphor to Measurement: Resilience of What to What?. Ecosystems, 4, 765-781. https://doi.org/10.1007/s10021-001-0045-9

Rosowsky, David V. 2020. Defining Resilience. Sustainable and Resilient Infrastructure 5 (3). https://doi.org/10.1080/23789689.2019.1578166.

Simpson, B., 1992. Retaining Structures: Displacement and Design. Geotechnique 42 (4) 541-576. https://doi.org/10.1680/geot.1992.42.4.541.

Salgado, Rodrigo, 2022. The Engineering of Foundations, Slopes and Retaining Structures. CRC Press.

Cimellaro, G. P., 2016. Resilience-Based Design (RBD). Geotechnical, Geological and Earthquake Engineering 41, 31-48. https://doi.org/10.1007/978-3-319-30656-8_2/FIGURES/6.

Arce, R. M., and Palomino, C., 2006. El medio ambiente y la sostenibilidad en las escuelas de ingeniería civil. Universidad Politécnica de Madrid. https://oa.upm.es/45172/1/INVE_MEM_2006_245390.pdf

Kermanshachi, S., Rouhanizadeh, B. and Dao, B., 2019. Application of Delphi Method in Identification, Ranking, and Weighting of Project Complexity Indicators for Construction Projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction 12(1). https://doi.org/10.1061/(ASCE)LA.1943-4170.0000338

Trujillo, R., 2004. Aplicaciones del método Delphi: Casos exitosos de forecasing en Colombia (Empaques flexibles y semi rígidos en Colombia y Cadena láctea y sus derivados en Colombia. Universidad Externado de Colombia.

Oñates N. and Martínez L., 1990. Utilización del método Delphy en la pronosticación: Una experiencia inicial. Instituto de Investigaciones Económicas.

Saint Paul, R. and Ténière, P. F. (1974). Innovation et évaluation technologiques. Entreprise moderne d'édition.

García V., Aquino S., P., Guzmán A. and Medina, A., 2011. Propuesta para el desarrollo de instrumentos de autoevaluación para programas educativos a distancia. Revista Electrónica: Actualidades Investigativas en Educación, 11(2), 1-27. WWW Document]. https://www.redalyc.org/pdf/447/44720020017.pdf

Astigarraga, E. Método Delphi. Universidad de Deusto.

Francis, R. and Behailu B., 2014. A Metric and Frameworks for Resilience Analysis of Engineered and Infrastructure Systems. Reliability Engineering and System Safety 121, 90-103. https://doi.org/10.1016/j.ress.2013.07.004.

Downloads

Published

2025-03-28

How to Cite

Pineda, J. A., Larrañaga-Rubio S. C., & González-Pérez, M. G. (2025). Resilience index for earth retaining systems in road infrastructure. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250369

Issue

Section

Research paper

Most read articles by the same author(s)