Understanding mobility patterns in a university setting: Transport mode preferences and modal shift potential
DOI:
https://doi.org/10.17533/udea.redin.20251189Keywords:
Mobility Patterns, Sustainable Transport, University Community, Modal Shift, logistic regressionAbstract
This study investigates mobility patterns within the University of Cuenca community, focusing on transport mode preferences and the potential for modal shifts toward sustainable transport. Unlike previous studies that primarily examine urban transport in general contexts, this research uniquely explores a university setting in a mid-sized city in a developing country, providing insights into transport choices' demographic and behavioral determinants. An online survey with 1,253 university members reveals distinct differences between students and employees: Students predominantly use active transport modes, while employees rely on private vehicles. Logistic regression analysis highlights key factors influencing mobility preferences, such as age, gender, and income. Notably, the female students tend to prefer private vehicle use, while younger and lower-income students prefer sustainable transport options. The study also examines the willingness to adopt public and active transport modes, identifying targeted interventions, such as improving public transit safety and infrastructure. These findings contribute to understanding sustainable mobility in university communities and provide actionable insights for urban planning and policy development in comparable settings. This research establishes a pre-pandemic baseline for evaluating post-pandemic shifts in commuting behaviors. It offers a framework for advancing sustainable transport strategies in mid-sized cities of developing nations.
Downloads
References
W. Q. Al-Salih and D. Esztergár-Kiss, “Linking mode choice with travel behavior by using logit model based on utility function,” Sustainability, vol. 13, no. 8, p. 4332, 2021.
M. Danaf, M. Abou-Zeid, and I. Kaysi, “Modeling travel choices of students at a private, urban university: Insights and policy implications,” Case Stud. Transp. Policy, 2014, doi: 10.1016/J.CSTP.2014.08.006.
C. Ding, X. Cao, B. Yu, and Y. Ju, “Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity,” Transp. Res. Part Policy Pract., vol. 148, pp. 22–35, 2021.
D. Q. Nguyen-Phuoc, R. Amoh-Gyimah, A. T. P. Tran, and C. T. Phan, “Mode choice among university students to school in Danang, Vietnam,” Travel Behav. Soc., 2018, doi: 10.1016/J.TBS.2018.05.003.
K. Whalen, A. Páez, and J. A. Carrasco, “Mode choice of university students commuting to school and the role of active travel,” J. Transp. Geogr., 2013, doi: 10.1016/J.JTRANGEO.2013.06.008.
F. Ahmed, J. Catchpole, and T. Edirisinghe, “Understanding young commuters’ mode choice decision to use private car or public transport from an extended theory of planned behavior,” Transp. Res. Rec., vol. 2675, no. 3, pp. 200–211, 2021.
P. Ribeiro, F. P. da Fonseca, and T. Meireles, “Sustainable mobility patterns to university campuses: Evaluation and constraints,” Case Stud. Transp. Policy, 2020, doi: 10.1016/J.CSTP.2020.02.005.
A. Soltani, M. Azmoodeh, M. Doostvandi, A. S. Ahmadi, and M. Rahimi, “Post-COVID-19 campus commuting patterns and influential factors: evidence from a developing country,” Transp. Plan. Technol. Print, 2024, doi: 10.1080/03081060.2023.2300800.
C. Liu, E. Bardaka, and E. Paschalidis, “Sustainable transport choices in public transit access: Travel behavior differences between university students and other young adults,” Int. J. Sustain. Transp., vol. 17, no. 6, pp. 679–695, Jun. 2023, doi: 10.1080/15568318.2022.2084656.
M. Moniruzzaman and S. Farber, “What drives sustainable student travel? Mode choice determinants in the Greater Toronto Area,” Int. J. Sustain. Transp., vol. 12, no. 5, pp. 367–379, May 2018, doi: 10.1080/15568318.2017.1377326.
M. Obi, “Fostering sustainable travel behaviour through physical environment.,” Master’s Thesis, uis, 2022. Accessed: Oct. 29, 2024. [Online]. Available: https://uis.brage.unit.no/uis-xmlui/handle/11250/3032635
M. Municipalidad de Cuenca, “Plan de Movilidad y Espacios Públicos, PMEP,” Tomo I, p. 540, 2015.
Red de Monitoreo de la EMOV EP, “Informe de la Calidad de Aire, Cuenca 2023,” Alcaldía de Cuenca, 2024. [Online]. Available: https://www.researchgate.net/publication/381431548_Informe_de_la_Calidad_Aire_Cuenca_2023/link/6686a3c2714e0b031543c7cc/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
INEC, “Estadísticas Vitales. Registro Estadístico de Defunciones Generales de 2022,” Instituto Nacional de Estadísticas y Censos, Ecuador, Sep. 2023. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/Defunciones_Generales_2022/Principales_resultados_EDG_2022.pdf
A. Ferdman, “Well-being and mobility: A new perspective,” Transp. Res. Part Policy Pract., vol. 146, pp. 44–55, 2021.
E. Pantelaki, E. Maggi, and D. Crotti, “Mobility impact and well-being in later life: A multidisciplinary systematic review,” Res. Transp. Econ., vol. 86, p. 100975, 2021.
S. Nash and R. Mitra, “University students’ transportation patterns, and the role of neighbourhood types and attitudes,” J. Transp. Geogr., 2019, doi: 10.1016/J.JTRANGEO.2019.03.013.
U. F. Urmi, K. Rahman, Md. J. Uddin, and M. Hasan, “The Prevalence of Active Commuting to School and the Factors Influencing Mode Choice: A Study of University Students in a Secondary City of Bangladesh,” Sustainability, 2022, doi: 10.3390/SU142416949.
J. Abildtrup, S. B. Olsen, and A. Stenger, “Combining RP and SP data while accounting for large choice sets and travel mode – an application to forest recreation,” J. Environ. Econ. Policy, vol. 4, no. 2, pp. 177–201, May 2015, doi: 10.1080/21606544.2014.986210.
G. W. Harrison, “Real choices and hypothetical choices,” in Handbook of Choice Modelling, Edward Elgar Publishing, 2024, pp. 246–275. Accessed: Oct. 29, 2024. [Online]. Available: https://www.elgaronline.com/edcollchap/book/9781800375635/book-part-9781800375635-15.xml
L. G. Willumsen, Modelling transport. Wiley, 2002.
M. Heilig, N. Mallig, T. Hilgert, M. Kagerbauer, and P. Vortisch, “Large-Scale Application of a Combined Destination and Mode Choice Model Estimated with Mixed Stated and Revealed Preference Data,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2669, no. 1, pp. 31–40, Jan. 2017, doi: 10.3141/2669-04.
T. Shannon, B. Giles-Corti, T. Pikora, M. Bulsara, T. Shilton, and F. Bull, “Active commuting in a university setting: Assessing commuting habits and potential for modal change,” Transp. Policy, 2006, doi: 10.1016/J.TRANPOL.2005.11.002.
D. Wang and Y. Liu, “Factors influencing public transport use: a study of university commuters’ travel and mode choice behaviours,” 2015.
J. Zhou, “Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students,” Transp. Res. Part -Policy Pract., 2012, doi: 10.1016/J.TRA.2012.04.001.
A. Romanowska, R. Okraszewska, and K. Jamroz, “A Study of Transport Behaviour of Academic Communities,” Sustainability, 2019, doi: 10.3390/SU11133519.
ICOMOS, “Report on the ICOMOS Advisory Mission to Historic Centre of Santa Ana de los Rios de Cuenca (C 863) 18th to 21s August 2014,” International Council on Monuments and Sites, Cuenca, C 863, 2014.
Universidad de Cuenca, “Boletín Estadístico 2016,” Universidad de Cuenca, Cuenca, Boletín Estadístico, 2016. Accessed: Oct. 21, 2024. [Online]. Available: https://www.google.com/search?q=bolet%C3%ADn+estad%C3%ADstico+universidad+de+cuenca&rlz=1C1FKPE_enEC1126EC1126&oq=bolet%C3%ADn+estad%C3%ADstico+universidad+de+cuenca&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIGCAEQRRg80gEIODMzMWowajeoAgiwAgE&sourceid=chrome&ie=UTF-8
A. D. Lind, G. W. Marchal, and A. S. Wathen, ESTADÍSTICA APLICADA A LOS NEGOCIOS Y LA ECONOMÍA, Decimoquinta edición. México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V., 2012.
U. N. Habitat, State of the world’s cities 2012/2013: Prosperity of cities. Routledge, 2013. Accessed: Oct. 29, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.4324/9780203756171/state-world-cities-2012-2013-un-habitat
L. Yang et al., “Global and local associations between urban greenery and travel propensity of older adults in Hong Kong,” Sustain. Cities Soc., vol. 63, p. 102442, 2020.
J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied multiple regression/correlation analysis for the behavioral sciences. Routledge, 2013. Accessed: Oct. 29, 2024. [Online]. Available: https://www.taylorfrancis.com/books/mono/10.4324/9780203774441/applied-multiple-regression-correlation-analysis-behavioral-sciences-jacob-cohen-patricia-cohen-stephen-west-leona-aiken
M. Hubert, Statistische modellen en Data analyse. Faculteit Wetenschappen Departement Wiskunde, KU Leuven, 2014.
J. E. Immers and L. H. Stada, Traffic Demand Modelling. Katholieke Universiteit Leuven, 1998.
J. de Dios Ortúzar and L. G. Willumsen, Modelling transport. John wiley & sons, 2011.
I. Campaña, “¿A mayor contaminación ambiental, mayor mortalidad?,” Revista Opción S, Ecuador, Aug. 2019. [Online]. Available: https://opcions.ec/portal/2019/08/01/a-mayor-contaminacion-ambiental-mayor-mortalidad/
S. Chakrabarti, “How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in Los Angeles,” Transp. Policy, vol. 54, pp. 80–89, 2017.
C. Zhao, T. A. S. Nielsen, A. S. Olafsson, T. A. Carstensen, and X. Meng, “Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing,” Transp. Policy, vol. 64, pp. 102–112, 2018.
P. Zhao, D. Yuan, and Y. Zhang, “The Public Bicycle as a Feeder Mode for Metro Commuters in the Megacity Beijing: Travel Behavior, Route Environment, and Socioeconomic Factors,” J. Urban Plan. Dev., vol. 148, no. 1, p. 04021064, Mar. 2022, doi: 10.1061/(ASCE)UP.1943-5444.0000785.
I. Kawgan-Kagan, “Are women greener than men? A preference analysis of women and men from major German cities over sustainable urban mobility,” Transp. Res. Interdiscip. Perspect., vol. 8, p. 100236, 2020.
C. Miralles-Guasch, M. M. Melo, and O. Marquet, “A gender analysis of everyday mobility in urban and rural territories: from challenges to sustainability,” Gend. Place Cult., vol. 23, no. 3, pp. 398–417, Mar. 2016, doi: 10.1080/0966369X.2015.1013448.
P. Ribeiro, F. Fonseca, and T. Meireles, “Sustainable mobility patterns to university campuses: Evaluation and constraints,” Case Stud. Transp. Policy, vol. 8, no. 2, pp. 639–647, 2020.
E. Van Eenoo, K. Boussauw, and K. Fransen, “Car dependency beyond land use,” J. Transp. Land Use, vol. 15, no. 1, pp. 117–136, 2022.
J. K. Wiersma, “Commuting patterns and car dependency in urban regions,” J. Transp. Geogr., vol. 84, p. 102700, 2020.
K. Crist et al., “Correlates of active commuting, transport physical activity, and light rail use in a university setting,” J. Transp. Health, vol. 20, p. 100978, 2021.
E. M. Delmelle and E. C. Delmelle, “Exploring spatio-temporal commuting patterns in a university environment,” Transp. Policy, vol. 21, pp. 1–9, 2012.
J. Allen, J. C. Muñoz, and J. de Dios Ortúzar, “Understanding public transport satisfaction: Using Maslow’s hierarchy of (transit) needs,” Transp. Policy, vol. 81, pp. 75–94, 2019.
D. Van Lierop, M. G. Badami, and A. M. El-Geneidy, “What influences satisfaction and loyalty in public transport? A review of the literature,” Transp. Rev., vol. 38, no. 1, pp. 52–72, Jan. 2018, doi: 10.1080/01441647.2017.1298683.
A. Minhans, A. Chatterjee, and S. Popli, “Public perceptions: an important determinant of transport users’ travel behaviour.,” Hum. Geogr. Stud. Res. Hum. Geogr., vol. 14, no. 2, 2020, Accessed: Oct. 29, 2024. [Online]. Available: https://www.academia.edu/download/81526274/a_142_1_minhans.pdf
L. Redman, M. Friman, T. Gärling, and T. Hartig, “Quality attributes of public transport that attract car users: A research review,” Transp. Policy, vol. 25, pp. 119–127, 2013.
T. F. Schubert, E. Henning, and S. B. Lopes, “Analysis of the possibility of transport mode switch: A case study for Joinville students,” Sustainability, vol. 12, no. 13, p. 5232, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter