Estudio de las relaciones entre parámetros estructurales de sistemas porosos desordenados y la difusividad efectiva mediante Monte Carlo Cinético

Autores/as

  • Alejandro Ramírez Universidad Nacional de Colombia
  • John Jairo Castañeda Universidad Nacional de Colombia
  • Elizabeth Pabón Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.13654

Palabras clave:

Monte Carlo Cinético, difusividad efectiva, medios porosos, umbral de percolación, mecanismos de difusión

Resumen

Se realizó un estudio del efecto de la porosidad y el tamaño de poro sobre las propiedades de transporte de hidrógeno en un medio poroso desordenado, utilizando Monte Carlo Cinético. Se corroboró la aleatoriedad de los poros en el medio, inscrito dentro de un retículo cúbico simple, calculando el umbral de percolación a partir del parámetro de orden. En cuanto al transporte de masa, los resultados sugieren que el tamaño del poro, variado entre 1 y 5 nm, sólo afecta a la difusividad efectiva si los valores de porosidad se encuentran cerca al umbral de percolación, y que dicha difusividad es prácticamente independiente de la concentración de las moléculas de H2. La simulación permitió caracterizar el comportamiento difusional anómalo en función de la porosidad, siendo este consecuente con el reportado previamente para retículos bidimensionales.
|Resumen
= 247 veces | PDF
= 51 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alejandro Ramírez, Universidad Nacional de Colombia

Grupo Ciencia de Materiales Avanzados, Escuela de Química. Grupo Ciencia de los Materiales, Instituto de Química, Universidad de Antioquia. 

John Jairo Castañeda, Universidad Nacional de Colombia

Grupo Ciencia de Materiales Avanzados, Escuela de Química.

Elizabeth Pabón, Universidad Nacional de Colombia

Grupo Ciencia de Materiales Avanzados, Escuela de Química.

Citas

R. Krishna, J. A. Wesselingh. “The Maxwell-Stefan approach to mass transfer”. Chemical Engineering Science. Vol. 52. 1997. pp. 861-911. DOI: https://doi.org/10.1016/S0009-2509(96)00458-7

M. Deqiang, L. Zhong-sheng, H. Cheng, D. Ned. “Determination of the effective diffusion coefficient in porous media including Knudsen effects”. Microfluid Nanofluid. Vol. 4. 2008. pp. 257-260. DOI: https://doi.org/10.1007/s10404-007-0182-3

G. S. Armatas. “Determination of the effects of the pore size distribution and pore connectivity distribution on the pore tortuosity and diffusive transport in model porous networks”. Chemical Engineering Science. Vol. 61. 2006. pp. 4662-4675. DOI: https://doi.org/10.1016/j.ces.2006.02.036

G. M. Laudone, G. P. Matthews, P. A. C. Gane. “Modelling diffusion from simulated porous structures”. Chemical engineering science. Vol. 63. 2008. pp 1987-1996. DOI: https://doi.org/10.1016/j.ces.2007.12.031

Q. Cai, A. Butons, N. A. Seaton, M. J. Biggs. “A pore network model for diffusion in nanoporous carbons: Validation by molecular dynamics simulation”. Chemical Engineering Science. Vol. 63. 2008. pp. 3319-3327. DOI: https://doi.org/10.1016/j.ces.2008.03.032

R. Krishna, J. M Van Baten. “Insights into diffusion of gases in zeolites gained from molecular dynamics simulation”. Microporous and Mesoporous Materials. Vol. 109. 2008. pp. 91-108. DOI: https://doi.org/10.1016/j.micromeso.2007.04.036

R. Krishna, J. M. Van Baten. “An investigation of the characteristics of Maxwell–Stefan diffusivities of binary mixtures in silica nanopores”. Chemical Engineering Science. Vol. 64. 2009. pp. 870-882. DOI: https://doi.org/10.1016/j.ces.2008.10.045

W. Zhiqiang, L. Zhiping, W. Wenchuan, X. Nanping. “Diffusion of H2 , CO, N2 , O2 and CH4 Through Nanoporous Carbon Membranes”. Chinese journal of chemical engineering. Vol. 16. 2008. pp. 709-714. DOI: https://doi.org/10.1016/S1004-9541(08)60144-5

Y. G. Seo, G. H. Kum, N. A. Seaton. “Monte Carlo simulation of transport diffusion in noporous carbon membranes”. Journal of Membrane Science. Vol. 195. 2002. pp. 65-73. DOI: https://doi.org/10.1016/S0376-7388(01)00549-X

S. De, S. Teitel, Y. Shapir, E. H. Chimowitz. “Monte Carlo Simulation of Fickian diffusion in the critical region”. Journal of Chemical Physics. Vol. 116. 2002. pp. 3012-3017. DOI: https://doi.org/10.1063/1.1433967

J. M. Zalc, S. C. Reyes, E. Iglesias. “Monte Carlo simulations of surface and gas phase diffusion in complex porous structures”. Chemical Engineering Science. Vol. 58. 2003. pp. 4605-4617. DOI: https://doi.org/10.1016/j.ces.2003.07.008

T. Duren, S. Jakobtorweihen, F. J. Keil, N. A. Seaton. “Grand canonical molecular dynamics simulations of transport diffusion in geometrically heterogeneous pores”. Physical Chemistry Chemical Physics. Vol. 5. 2003. pp. 369-375. DOI: https://doi.org/10.1039/B207843K

R. Krishna, J. M. Van Baten, E. García-Pérez, S. Calero. “Diffusion of CH4 and CO2 in MFI, CHA and DDR zeolites”. Chemical Physics Letters. Vol. 429. 2006. pp. 219-224. DOI: https://doi.org/10.1016/j.cplett.2006.08.015

L. Song, Z. Sun, L. Duan, J. Gui, G. S. McDougall. “Adsorption and diffusion properties of hydrocarbons in zeolites”. Microporous and Mesoporous Materials. Vol. 104. 2007. pp. 115-128. DOI: https://doi.org/10.1016/j.micromeso.2007.01.015

G. K. Papadopoulos, D. N. Theodorou. “Simulation studies of methane, carbon dioxide, hydrogen and deuterium in ITQ-1 and NaX zeolites”. Molecular Simulation. Vol. 35. 2009. pp. 79-89. DOI: https://doi.org/10.1080/08927020802468380

R. Krishna, J. M. Van Baten. “Influence of segregated adsorption on mixture diffusion in DDR zeolite”. Chemical Physics Letters. Vol. 446. 2007. pp. 344- 349. DOI: https://doi.org/10.1016/j.cplett.2007.08.060

A. I. Skoulidas, D. S. Sholl. “Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular Dynamics Simulations”. The Journal of Physical Chemistry B. Vol. 109. 2005. pp. 15760-15768. DOI: https://doi.org/10.1021/jp051771y

G. Garberoglio, R. Vallauri. “Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks”. Microporous and Mesoporous Materials. Vol. 116. 2008. pp. 540-547. DOI: https://doi.org/10.1016/j.micromeso.2008.05.023

Z. Mao, S. B. Sinnott. “A Computational Study of Molecular Diffusion and Dynamic Flow through Carbon Nanotubes”. The Journal of Physical Chemistry B. Vol. 104. 2000. pp. 4618-4624. DOI: https://doi.org/10.1021/jp9944280

D. Cao, J. Wu. “Self-Diffusion of Methane in SingleWalled Carbon Nanotubes at Sub- and Supercritical Conditions”. Langmuir. Vol. 20. 2004. pp. 3759-3765. DOI: https://doi.org/10.1021/la036375q

J. M. D. MacElroy, M. J. Boyle. “Nonequilibrium molecular dynamics simulation of a model carbon membrane separation of CH4 /H2 mixtures”. Chemical Engineering Journal. Vol. 74. 1999. pp. 85-97. DOI: https://doi.org/10.1016/S1385-8947(99)00056-X

O. E. Haas, J. M. Simon, S. Kjelstrup. “Surface SelfDiffusion and Mean Displacement of Hydrogen on Graphite and a PEM Fuel Cell Catalyst Support”. The Journal of Physical Chemistry C. Vol. 113. 2009. pp. 20281-20289. DOI: https://doi.org/10.1021/jp902491s

K. I. Yonemori, A. Takitani, S. Furukawa, T. Nitta, H. Takahashi, M. Nakano. “Non-equilibrium molecular dynamics simulation study on permeation phenomena of LJ particles in slit-shaped membranes with periodic belt-like heterogeneous surfaces”. Fluid Phase Equilibria. Vol. 257. 2007. pp. 190-194. DOI: https://doi.org/10.1016/j.fluid.2007.01.030

D. Paschek, R. Krishna. “Kinetic Monte Carlo simulations of transport diffusivities of binary mixtures in zeolites”. Physical Chemistry Chemical Physics. Vol. 3. 2001. pp. 3185-3191. DOI: https://doi.org/10.1039/b101982l

N. Laloué, C. Laroche, H. Jobic, A. Methivier. “Kinetic Monte Carlo study of binary diffusion in silicalite”. Adsorption. Vol. 13. 2007. pp. 491-500.

B. Smit, R. Krishna. “Molecular simulations in zeolitic process design”. Chemical Engineering Science. Vol. 58. 2003. pp. 557-568. DOI: https://doi.org/10.1016/S0009-2509(02)00580-8

D. Paschek, R. Krishna. “Diffusion of Binary Mixtures in Zeolites: Kinetic Monte Carlo versus Molecular Dynamics Simulations”. Langmuir. Vol. 17. 2000. pp. 247-254. DOI: https://doi.org/10.1021/la000695h

M. Rahmati, H. Modarress. “Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous siliceous zeolites at room temperature”. Applied Surface Science. Vol. 255. 2009. pp. 4773- 4778. DOI: https://doi.org/10.1016/j.apsusc.2008.11.072

M. Georgakis, G. Stavropoulos, G. P. Sakellaropoulous. “Molecular dynamic study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups”. Intenational Journal of Hydrogen Energy. Vol. 32. 2007. pp. 1999-2004. DOI: https://doi.org/10.1016/j.ijhydene.2006.08.040

M. Georgakis, G. Stavropoulos, G. P. Sakellaropoulous. “Predictions for molecular hydrogen adsorption in microporous carbon via molecular dynamics simulations and a suggestion or a hydrogen storage medium”. International Journal of Hydrogen Energy. Vol. 32. 2007. pp. 3465-3470. DOI: https://doi.org/10.1016/j.ijhydene.2007.03.022

A. F. Voter. “Introduction to the kinetic Monte Carlo method”. Theoretical Division. Los Alamos National Laboratory, Los Alamos. http://www.ipam.ucla.edu/publications/matut/matut_5898_preprint.pdf. Consultada el 25 de junio de 2009.

N. Laloué, C. Laroche, H. Jobic, A. Méthivier. “Kinetic Monte Carlo sudy of binary diffusion in silicalite”. Adsorption. Vol. 13. 2007. pp. 491-500. DOI: https://doi.org/10.1007/s10450-007-9067-8

A. Ramírez, L. Sierra, M. Mesa, R. Johans. “Simulation of nitrogen adsorption-desorption isotherms: hysteresis as an effect of pore connectivity”. Chemical Engineering Science. Vol. 60. 2005. pp. 4702-4708. DOI: https://doi.org/10.1016/j.ces.2005.03.004

J. Hoshen, R. Kopelman. “Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm”. Physical Review B. Vol. 14. 1976. pp. 3438-3445. DOI: https://doi.org/10.1103/PhysRevB.14.3438

D. Stauffer. Introduction to Percolation Theory. 1a . ed. Ed. London: Taylor & Francis Group. Londres, Inglaterra. 1985. pp. 11-13, 17, 30-31.

A. Einstein. “On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat”. Annalen der Physik. Vol. 17. 1905. pp. 549-560. DOI: https://doi.org/10.1002/andp.19053220806

R. Kimmich. “Strange kinetics, porous media, and NMR”. Chemical Physics. Vol. 284. 2002. pp. 253- 285. DOI: https://doi.org/10.1016/S0301-0104(02)00552-9

A. Klemm, R. Metzler, R. Kimmich. “Diffusion on random-site percolation clusters: Theory and NMR microscopy experiments with model objects”. Physical Review E. Vol. 65. 2002. pp. 021112-1-021112-11. DOI: https://doi.org/10.1103/PhysRevE.65.021112

M. J. Saxton. “Anomalous Diffusion Due to Obstacles: A Monte Carlo Study”. Biophysical Journal. Vol. 66. 1994. pp. 394-401. DOI: https://doi.org/10.1016/S0006-3495(94)80789-1

Y. Li, G. Farrher, R. Kimmich. “Sub- and superdiffusive molecular displacement laws in disordered porous media probed by nuclear magnetic resonance”. Physical Review E. Vol. 74. 2006. pp. 066309-1- 066309-7. DOI: https://doi.org/10.1103/PhysRevE.74.066309

Descargas

Publicado

2012-11-22

Cómo citar

Ramírez, A., Castañeda, J. J., & Pabón, E. (2012). Estudio de las relaciones entre parámetros estructurales de sistemas porosos desordenados y la difusividad efectiva mediante Monte Carlo Cinético. Revista Facultad De Ingeniería Universidad De Antioquia, (60), 42–50. https://doi.org/10.17533/udea.redin.13654