Modelamiento del flujo de calor en el proceso de activación alcalina de la ceniza volante
DOI:
https://doi.org/10.17533/udea.redin.20230624Palabras clave:
Ceniza volante, modelo descriptivo, cemento alcalinoResumen
La producción de cemento juega un papel importante en el fortalecimiento de la infraestructura de un país en pleno crecimiento como lo es Colombia. Sin embargo, la producción de este material tiene un alto costo energético y contribuye a la emisión de grandes cantidades de CO2. Para abordar estas preocupaciones ambientales, es esencial explorar materiales alternativos que puedan reemplazar parcial o completamente al cemento tradicional. El cemento alcalino activado (AAC) se ha convertido en un candidato prometedor en este sentido. Por ello, es necesario comprender el proceso de activación alcalina y las variables que influyen en él. En esta investigación se propone un modelo semifísico de base fenomenológica, el cual predice el desempeño de algunas variables que controlan la activación alcalina: concentración del activador (NaOH), el flujo de calor y el grado de reacción. Los resultados del modelo indican que con el incremento del activador alcalino (NaOH) el grado de reacción también se incrementa. El modelo presenta resultados precisos comparados con el desempeño del modelo propuesto por Freisleben-Hansen. En esta comparación se utilizó el criterio de error cuadrado integral (ISE).
Descargas
Citas
M. M. A. Elahi, M. M. Hossain, M. R. Karim, M. F. Mohd-Zain, and C. Shearer, “A review on alkali-activated binders: Materials composition and fresh properties of concrete,” Construction and Building Materials, vol. 210, Nov. 10, 2020. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2020.119788
A. Palomo, O. Maltseva, I. Garcia-Lodeiro, and A. Fernández-Jiménez, “Portland versus alkaline cement: Continuity or clean break: “a key decision for global sustainability”,” Sec. Solid State Chemistry, vol. 9, Oct. 11 2021. [Online]. Available: https://doi.org/10.3389/fchem.2021.705475
A. A. Hoyos-Montilla, F. Puertas, and J. I. Tobón, “Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash,” Journal of Thermal Analysis and Calorimetry, vol. 131, Sep. 13 2017. [Online]. Available: https://doi.org/10.1007/s10973-017-6715-4
P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, and Y. Ling, “Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review,” Journal of Cleaner Production, vol. 270, May. 20, 2020. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.122389
F. Xie, Z. Liu, D. Zhang, J. Wang, T. Huang, and D. Wang, “Reaction kinetics and kinetics models of alkali activated phosphorus slag,” Construction and Building Materials, vol. 237, Nov. 26, 2019. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2019.117728
P. Termkhajornkit and R. Barbarulo, “Modeling the coupled effects of temperature and fineness of portland cement on the hydration kinetics in cement paste,” Cement and Concrete Research, vol. 42, no. 3, Nov. 22, 2011. [Online]. Available: https://doi.org/10.1016/j.cemconres.2011.11.016
K. Bong-Park, T. Noguchi, and J. Plawsky, “Modeling of hydration reactions using neural networks to predict the average properties of cement paste,” Cement and Concrete Research, vol. 35, no. 9, Aug. 02, 2004. [Online]. Available: https://doi.org/10.1016/j.cemconres.2004.08.004
A. A. Siyal, K. Azizi-Azizli, Z. Man, L. Ismail, and M. Irfan-Khan, “Geopolymerization kinetics of fly ash based geopolymers using jmak model,” Ceramics International, vol. 42, no. 14, Jul. 01, 2016. [Online]. Available: https://doi.org/10.1016/j.ceramint.2016.07.006
R. Xiao, X. Jiang, M. Zhang, P. Polaczyk, and B. Huang, “Analytical investigation of phase assemblages of alkali-activated materials in cao-sio2-al2o3 systems: The management of reaction products and designing of precursors,” Materials & Design, vol. 194, Jul. 20, 2020. [Online]. Available: https://doi.org/10.1016/j.matdes.2020.108975
Y. Sun and H. S. L. K. Q Wang and, “Prediction of compressive strength development for blended cement mortar considering fly ash fineness and replacement ratio,” Construction and Building Materials, vol. 271, Oct. 20, 2020. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2020.121532
X. Y. Wang and H. S. Lee, “Modeling the hydration of concrete incorporating fly ash or slag,” Cement and Concrete Research, vol. 40, no. 7, Mar. 01, 2010. [Online]. Available: https://doi.org/10.1016/j.cemconres.2010.03.001
L. Y. Xu, Y. Alrefaei, Y. S. Wang, and J. G. Dai, “Recent advances in molecular dynamics simulation of the n-a-s-h geopolymer system: modeling, structural analysis, and dynamics,” Construction and Building Materials, vol. 276, Dec. 24, 2020. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2020.122196
I. García-Lodeiro, S. Donatello, A. Fernandez-Jiménez, and A. Palomo, “Ehydration of hybrid alkaline cement containing a very large proportion of fly ash: A descriptive model,” Materials, vol. 9, no. 605, Jul. 18, 2016. [Online]. Available: https://doi.org/10.3390/ma9070605
J. J. Thomas, J. J. Biernacki, J. W. Bullard, S. Bishnoi, J. S. Dolado, G. W. Scherer, and et al., “Modeling and simulation of cement hydration kinetics and microstructure development,” Cement and Concrete Research, vol. 41, no. 12, Oct. 07, 2010. [Online]. Available: https://doi.org/10.1016/j.cemconres.2010.10.004
D. Marchon and R. Flatt, “8 - mechanisms of cement hydration,” Science and Technology of Concrete Admixtures, vol. 131, Nov. 20 2015. [Online]. Available: https://doi.org/10.1016/B978-0-08-100693-1.00008-4
B. Sun, G. Ye, and G. de Schutter, “A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials,” Construction and Building Materials, vol. 326, Feb. 02, 2022. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2022.126843
T. M. Works. (1994-2023) Elegir un solver de ode. [Online]. Available: https://es.mathworks.com/help/matlab/math/choose-an-ode-solver.html
G. M. Idorn and N. Thaulow, “Effectiveness of research on fly ash in concrete,” Cement and Concrete Research, vol. 15, no. 3, Dec. 21, 1984. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2020.119788
M. Letizia-Guerra, L. Sorini, and L. Stefanini, “Quantile and expectile smoothing based on l1-norm and l2-norm fuzzy transforms,” International Journal of Approximate Reasoning, vol. 107, Jan. 23, 2019. [Online]. Available: https://doi.org/10.1016/j.ijar.2019.01.011
J. M. Pommersheim and J. R. Clifton, “Mathematical modeling of tricalcium silicate hydration,” Cement and Concrete Research, vol. 9, no. 6, Sep. 11, 1979. [Online]. Available: https://doi.org/10.1016/0008-8846(79)90072-3
A. A. Hoyos-Montilla, F. Puertas, and J. I. Tobón, “No accessstudy of the reaction stages of alkali-activated cementitious materials using microcalorimetry,” Advances in Cement Research, vol. 33, no. 1, Jan. 22 2021. [Online]. Available: https://doi.org/10.1680/jadcr.19.00025
M. Narmluk and T. Nawa, “Effect of fly ash on the kinetics of portland cement hydration at different curing temperatures,” Cement and Concrete Research, vol. 41, no. 6, Feb. 24 2011. [Online]. Available: https://doi.org/10.1016/j.cemconres.2011.02.005
Z. Li, G. Xu, and X. Shi, “Reactivity of coal fly ash used in cementitious binder systems: A state-of-the-art overview,” Fuel, vol. 301, May. 08 2021. [Online]. Available: https://doi.org/10.1016/j.fuel.2021.121031
O. Heinz and H. Heinz, “Cement interfaces: Current understanding, challenges, and opportunities,” Langmuir, vol. 37, no. 21, May. 17 2021. [Online]. Available: https://doi.org/10.1021/acs.langmuir.1c00617
H. Wang, X. Zhao, T. Wang, L. Su, B. Zhou, and Y. Li, “Determination of gel products in alkali-activated fly ash-based composites incorporating inorganic calcium additives,” Advances in Materials Science and Engineering, vol. 2022, Feb. 15, 2022. [Online]. Available: https://doi.org/10.1155/2022/7476671
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.