Mechanical behavior of anterior fixed partial dentures made of different materials subjected to static and dynamic loads

Authors

  • Federico Latorre-Correa Universidad de Antioquia
  • Nathaly Angel Universidad de Antioquia
  • Julio César Escobar-Restrepo Universidad de Antioquia
  • Junes Abdul Villarraga-Ossa Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.rfo.v29n1a6

Keywords:

Dental prostheses, Crowns, Ceramics, Finite element analysis

Abstract

Introduction:  the purpose of this study was to assess the mechanical behavior of lithium disilicate, alumina, and zirconia-based ceramic restorations, as well as metal-ceramic restorations, under static and dynamic load, in an upper anterior fixed site. Methods: four models of fixed partial dentures (FPD) were designed, representing alumina, zirconia, and metal-ceramic two-layered systems and a lithium disilicate monolithic system, with a 9 mm2 connector. The variables included were elastic modulus, Poisson’s ratio, and ultimate tensile strength. A static load of 100 N was applied up to 800 N, as well as a dynamic load of 100 and 200 N, calculating von Mises stress and maximum and minimum principal stresses. Results: all models showed a greater concentration of stress under static and dynamic load on the connector region, without exceeding the maximum tensile stress of metal and ceramic structures. The two-layered models showed greater stress concentration on the veneering ceramic compared with the structure. Conclusions: all stresses concentrated on the connector region, producing failure risk at this point of the structures. The veneering ceramic has a greater probability of failure in all two-layered models. The disilicate model can be considered as an alternative for clinical use. The metal-ceramic dentures showed the best distribution on the connector compared to all other models, confirming that they are the gold standard.

|Abstract
= 872 veces | PDF
= 210 veces|

Downloads

Download data is not yet available.

Author Biographies

Federico Latorre-Correa, Universidad de Antioquia

DMD, Specialist in Comprehensive Dentistry of the Adult, with an emphasis in Prosthodontics. Professor, School of Dentistry, Universidad de Antioquia

Nathaly Angel, Universidad de Antioquia

DMD, Specialist in Comprehensive Dentistry of the Adult, with an emphasis in Prosthodontics, School of Dentistry, Universidad de Antioquia.

Julio César Escobar-Restrepo, Universidad de Antioquia

DMD, Specialist in Comprehensive Dentistry of the Adult, with an emphasis in Prosthodontics. Assistant Professor, School of Dentistry, Universidad de Antioquia

Junes Abdul Villarraga-Ossa, Universidad Nacional de Colombia

Mechanical Engineer, Universidad Nacional de Colombia at Medellín. Master’s Degree in Mechanical Engineering, Universidad Simón Bolívar, Caracas, Venezuela. Ph.D. (C) in Science and Technology of Materials.

References

Denry IL. All ceramic restorations. EN: Rosenstiel S, Land M, Fujimoto J. Contemporary fixed prosthodontics. 4 ed. St. Louis Missouri: Elsevier; 2006. p. 774-804.

Shillingburg HT, Hobo S, Whitsett L, Jacobi R, Brackett S. Fundamentals of fixed prosthodontics. 3 ed. Chicago: Quintessence; 1997.

Raigrodski AJ, Chiche GJ. The safety and efficacy of anterior ceramic fixed partial dentures: a review of the literature. J Prosthet Dent. 2001; 86(5): 520-525. DOI: https://doi.org/10.1067/mpr.2001.120111

Denry I, Holloway JA. Ceramics for dental applications: a review. Materials (Basel). 2010; 3(1): 351-368. DOI: https://dx.doi.org/10.3390%2Fma3010351

Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent. 2004; 92(6): 557-562. https://doi.org/10.1016/S0022391304006158

Almeida-Diego A, dos-Santos C, Tenório-Landim K, Elias CN. Characterization of ceramic powders used in the InCeram systems to fixed dental prosthesis. Mat Res. 2007; 10(1): 47-51. DOI: http://dx.doi.org/10.1590/S1516-14392007000100011

Gracis S, Thompson VP, Ferencz JL, Silva N, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015; 28(3): 227-235.

Biskri ZE, Rached H, Bouchear M, Rached D. Computational study of structural, elastic and electronic properties of lithium disilicate (Li2Si2O5) glass-ceramic. J Mech Behav Biomed Mater. 2014; 32: 345-350. DOI: https://doi.org/10.1016/j.jmbbm.2013.10.029

Ivoclar Vivadent. IPS e.max press: scientific documentation. Schaan, Liechtenstein: Ivoclar Vivadent; 2014.

Beier US, Kapferer I, Burtscher D, Dumfahrt H. Clinical performance of porcelain laminate veneers for up to 20 years. Int J Prosthodont. 2012; 25(1): 79-85.

Zhang Y, Lee JJ, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013; 29(12): 1201-1208. DOI: https://doi.org/10.1016/j.dental.2013.09.004

Wassermann A, Kaiser M, Strub JR. Clinical long-term results of VITA in-ceram classic crowns and fixed partial dentures: a systematic literature review. Int J Prosthodont. 2006; 19(4): 355-363.

Fradeani M, D’Amelio M, Redemagni M, Corrado M. Five-year follow-up with Procera all-ceramic crowns. Quintessence Int. 2005; 36(2): 105-113.

Cehreli MC, Kökat AM, Akça K. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial. J Appl Oral Sci. 2009; 17(1): 49-55.

Parker RM. Use of zirconia in restorative dentistry. Dent Today. 2007; 26(3): 114-119.

Teixeira-da-Silva F, Andreiuolo R, Sabrosa CE. Mechanical behavior of non-veneered three unit fixed partial dentures of alumina-zirconia under cyclic load in wet environment. Mat Res. 2010; 13(1): 107-111. DOI: http://dx.doi.org/10.1590/S1516-14392010000100021

Manicone PF, Rossi-Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent. 2007; 35(11): 819-826. DOI: https://doi.org/10.1016/j.jdent.2007.07.008

Tinschert O, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate, alumina, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont. 2001; 14 (3): 231-238.

Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res. 2005; 84(5): 428-433. DOI: https://doi.org/10.1177/154405910508400506

Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analysis: advances and challenges in dental applications. J Dent. 2008; 36(7): 463-471. DOI: https://doi.org/10.1016/j.jdent.2008.03.010

Romeed SA, Fok SL, Wilson NH. A comparison of 2D and 3D finite element analysis of a restored tooth. J Oral Rehabil. 2006; 33(3): 209-215. DOI: https://doi.org/10.1111/j.1365-2842.2005.01552.x

Clelland NL, Ismail YH, Zaki HS, Pipko D. Threedimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants. 1991; 6(4): 391-398.

Itinoche KM, Ozcan M, Bottino MA, Oyafuso D. Effect of mechanical cycling on the flexural strength of densely sintered ceramics. Dent Mater. 2006; 22(11): 1029-1034. DOI: https://doi.org/10.1016/j.dental.2005.11.025

Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont. 2008; 17(5): 370-377. DOI: https://doi.org/10.1111/j.1532-849X.2008.00305.x

Nelson S. Wheeler’s dental anatomy, physiology and occlusion. 9 ed. St. Louis: Saunders Elsevier; 2010.

Scheid RC. Woelfel’s dental anatomy: its relevance to dentistry. 7 ed. Baltimore: Lippincott Williams & Wilkins; 2007.

Lindhe J, Lang NP, Karring T. Clinical periodontology and implant dentistry. 5 ed. Iowa: Blackwell Publishing; 2008.

Thompson MC, Field CJ, Swain MV. The all-ceramic, inlay supported fixed partial denture. Part 2. Fixed partial denture design: a finite element analysis. Aust Dent J. 2011; 56(3): 302-311. https://doi.org/10.1111/j.1834-7819.2011.01341.x

Chandur PK. Cementation in dental implantology: an evidence-based guide. [S.L.]: Springer; 2014.

Carter SM, Wilson PR. The effect of die-spacing on crown retention. Int J Prosthodont. 1996; 9(1): 21-29.

Dechow PC, Wang Q, Peterson J. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution. Anat Rec (Hoboken). 2010; 293(4): 618-629. DOI: https://doi.org/10.1002/ar.21124

Schwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003; 120(3): 252-277. DOI: https://doi.org/10.1002/ajpa.10121

Peterson J, Wang Q, Dechow PC. Material properties of the dentate maxilla. Anat Rec A Discov Mol Cell Evol Biol. 2006; 288(9): 962-972. DOI: https://doi.org/10.1002/ar.a.20358

Shahrbaf S, vanNoort R, Mirzakouchaki B, Ghassemieh E, Martin N. Effect of the crown design and interface lute parameters on the stress-state of machined crowntooth system: a finite element analysis. Dent Mater. 2013; 29(8): e123-e131. DOI: https://doi.org/10.1016/j.dental.2013.04.002

Dong-Xu L, Hong-Ning W, Chun-Ling W, Hong L, Ping S, Xiao Y. Modulus of elasticity of human periodontal ligament by optical measurement and numerical simulation. Angle Orthod. 2011; 81(2): 229-236. DOI: https://doi.org/10.2319/060710-311.1

Kamposiora P, Papavasiliou G, Bayne SC, Felton DA. Stress concentration in all-ceramic posterior fixed partial dentures. Quintessence Int. 1996; 27(10): 701-706.

Kayabaşı O, Yüzbasioğlub E, Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw. 2006; 37(10): 649-658. DOI: https://doi.org/10.1016/j.advengsoft.2006.02.004

Freitas AC Jr, Rocha EP, dos-Santos PH, de-Almeida EO, Anchieta RB. All-ceramic crowns over single implant zircon abutment. Influence of young’s modulus on mechanics. Implant Dent. 2010; 19(6): 539-548. DOI: https://doi.org/10.1097/ID.0b013e31820030ca

Ivoclar Vivadent. Spantan plus [Internet]. Schaan: Ivoclar Vivadent AG; 2014. Disponible en: http://www.ivoclarvivadent.com/en/p/all/products/alloys/ceramicalloys/containing-pd-silver/spartan-plus

Ivoclar Vivadent. Catalogue IPS d.SIGN scientific documentation. [Internet]. Schaan: Ivoclar Vivadent AG; 2003. Disponible en: http://www.ivoclarvivadent.es/es-es/productos/metalceramica/ips-dsign.

M ESPE. Technical Data Sheet. RelyXTM Unicem 2 automix self-adhesive resin cement. [Internet]. St. Paul: 3M ESPE; 2010. Disponible en: https://multimedia.3m.com/mws/media/669183O/relyxtm-unicem-2-automixself-adhesive-resin-cement.pdf.

O’Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res. 2001; 12(6): 648- 657.

Genovese K, Lamberti L, Pappalettere C. Finite element analysis of a new customized composite post system for endodontically treated teeth. J Biomech. 2005; 38(12): 2375-2389. DOI: https://doi.org/10.1016/j.jbiomech.2004.10.009

Beer F, Russell E, DeWolf J, Mazurek D. Mechanics of materials. 5 ed. Boston: McGraw-Hill; 2008.

Esquivel-Upshaw JF, Anusavice KJ, Young H, Jones J, Gibbs C. Clinical performance of a lithia disilicatebased core ceramic for three-unit posterior FPDs. Int J Prosthodont. 2004; 17(4): 469-475.

Zhang L, Wang Z, Chen J, Zhou W, Zhang S. Probabilistic fatigue analysis of all-ceramic crowns based on the finite element method. J Biomech. 2010; 43(12): 2321-2326. DOI: https://doi.org/10.1016/j.jbiomech.2010.04.030

Guazzato M, Proos K, Sara G, Swain MV. Strength, reliability, and mode of fracture of bilayered porcelain/ core ceramics. Int J Prosthodont. 2004; 17(2): 142-149.

Möllers K, Pätzold W, Parkot D, Kirsten A, Güth JF, Edelhoff D et al. Influence of connector design and material composition and veneering on the stress distribution of allceramic fixed dental prostheses: a finite element study. Dent Mater. 2011; 27(8): e171-e175. DOI: https://doi.org/10.1016/j.dental.2011.04.009

Oh WS, Anusavice KJ. Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures. J Prosthet Dent. 2002; 87(5): 536-542.

Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005; 21(5): 476-482. DOI: https://doi.org/10.1016/j.dental.2004.07.013

Guazzato M, Proos K, Quach L, Swain MV. Strength, reliability and mode of fracture of bilayered porcelain/ zirconia (Y-TZP) dental ceramics. Biomaterials. 2004; 25(20): 5045-5052. DOI: https://doi.org/10.1016/j.biomaterials.2004.02.036

Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res. 1995; 74(6): 1253-1258. DOI: https://doi.org/10.1177/00220345950740060301

Belli R, Guimarães JC, Lohbauer U, Baratieri LN. On the brittleness of dental ceramics: why do they fail? Quintessence Dent Technol. 2010; 33: 152-162.

Sailer I, Pjetursson BE, Zwahlen M, Hämmerle CH. A systematic review of the survival and complication rates of all-ceramic and metal–ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses. Clin Oral Implants Res. 2007; 18(Suppl 3): 86-96. DOI: https://doi.org/10.1111/j.1600-0501.2007.01468.x

Wolfart S, Eschbachb S, Scherrer S, Kern M. Clinical outcome of three-unit lithium-disilicate glass-ceramic fixed dental prostheses: up to 8 years results. Dent Mater. 2009; 25(9): e63-e71. DOI: https://doi.org/10.1016/j.dental.2009.05.003

Kern M, Sasse M, Wolfart S. Ten-year outcome of threeunit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc. 2012; 143(3): 234-240.

Solá-Ruiz MF, Lagos-Flores E, Román-Rodriguez J, Highsmith JR, Fons-Font A, Granell-Ruiz M. Survival rates of a lithium disilicate-based core ceramic for threeunit esthetic fixed partial dentures: a 10-year prospective study. Int J Prosthodont. 2013; 26(2): 175-180.

Motta AB, Pereira LC, da-Cunha AR, Duda FP. The influence of the loading mode on the stress distribution on the connector region of metal-ceramic and all-ceramic fixed partial denture. Artif Organs. 2008; 32(4): 283-291. DOI: https://doi.org/10.1111/j.1525-1594.2008.00544.x

Downloads

Published

2017-12-15

How to Cite

Latorre-Correa, F., Angel, N., Escobar-Restrepo, J. C., & Villarraga-Ossa, J. A. (2017). Mechanical behavior of anterior fixed partial dentures made of different materials subjected to static and dynamic loads. Revista Facultad De Odontología Universidad De Antioquia, 29(1), 96–130. https://doi.org/10.17533/udea.rfo.v29n1a6

Most read articles by the same author(s)

1 2 > >>