Analysis of stress distribution in different prefabricated intraradicular retention elements

Authors

  • Andrés Felipe Gómez-Mira Universidad de Antioquia
  • Edwin Chica-Arrieta Universidad de Antioquia
  • Federico Latorre-Correa Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.rfo.2367

Keywords:

Finite elemen analysis, Posts, Stresses distribution

Abstract

Introduction: the three-dimensional (3D) finite element analysis (FEA) was used to analyze the stress distribution in a maxillary central incisor, restored with prefabricated intrarradicular posts. Methods: the model of the dowel-restored tooth used involved dentin, periodontal ligament, cortical and trabecular bone, gingiva, metal-ceramic crown, resin cement and gutta-percha. The dowels were made of titanium alloy, glass fiber and carbon fiber. The dowel was cemented with resin luting agents. The analysis of stress distribution was performed by mean of the use of Algor software. The variables included their modulus of elasticity and Poisson`s ratio for all the components in the model. A load of 200 N was applied to the palatal surface of the crown at an angle of 45 degrees in relation to the longitudinal axis in order to calculate the stress distribution of the restored structure. Results: the results behaved differently depending on the intraradicular element used for retention of the crown. When the modulus of elasticity was higher in the intraradicular retention element, the stress distribution was observed to be higher in it, but it decreased in dentin. Conclusions: within the limitations of the study, it was found that increasing the modulus of elasticity in the dowel decreases the stress in dentin.

|Abstract
= 389 veces | PDF (ESPAÑOL (ESPAÑA))
= 136 veces|

Downloads

Download data is not yet available.

Author Biography

Edwin Chica-Arrieta, Universidad de Antioquia

 

References

Shillingburg HT, Hobo S, Whitsett L, Jacobi R, Brackett S. Preparation for extensively damaged teeth. En: Fundamentals of fixed prosthodontics. 3.a ed. Chicago: Quintessence; 1997. p. 181-209.

Guzy G, Nicholl J. In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent 1979; 42(1): 39-44.

Stockton LW. Factors affecting retention of post systems: A literature review. J Prosthet Dent 1999; 81(4): 380-385.

Sorensen JA, Engelman MJ. Effect of post adaptation on fracture resistance of endodontically treated teeth. J Prosthet Dent 1990; 64(4): 419-424.

Anusavice K. Propiedades mecánicas de los materiales dentales. En: Ciencia de los materiales dentales. 11.a ed. Madrid: Elsevier; 1996. p. 42-71.

Smith Ch T, Schumann NJ. Biomechanical criteria for evaluating prefabricated post-and-core systems: A guide for the restaurative dentist. Quintessence Int 1998; 29(5): 305-312.

Fernández A, Shetty S, Coutinho I. Factors determining post selection: A literature review. J Prosthet Dent 2003; 90(6): 556-562.

Schwartz R, Robbins J. Post placement and restoration of endodontically treated teeth: A literature Review. J Endod 2004; 30(5): 289-301.

Hudis S, Goldstein Gary. Restorative of endodontically treated teeth: A review of the literature. J Prosthet Dent 1986; 55(1): 33-38.

Becerra Gerardo, Valencia Guillermo. Relaciones endodóntico-protésicas, postes y muñones. Rev Fac Odontol Univ Antioq 1998; 10(1): 29-35.

Geng J-P, Tan KBC, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001; 85(6): 585-598.

Mah R, McEvoy S. Engineering principles and modeling strategies. En: McNeil C, editor. Science and practice of occlusion. Chicago: Quintessence; 1997. p. 153-164.

Peláez A, Mejía S. Conceptos básicos de modelación matemática y simulación computacional de sistemas biológicos. Rev CES Odontol 2000; 13(1): 51-55.

Fox K, Word DJ. A clinical report of 85 fractured metallic post-retained crowns. Int Endodont J 2004; 37(8): 561-573.

Ingle JI, Bakland LK. Preparación de la cavidad endodóntica. En: Endodoncia. 5.a ed . México DF: McGraw-Hill; 2004. p.409-579.

Buameister T, Avallone EA. Propiedades de los materiales. En: manual del ingeniero mecánico. 2.a Ed. México DF: McGraw-Hill; 1978.p.54-85.

Moyer R. Analysis of the craneofacial skeleton: cefalometrics. En: Handbook of orthodontics. 4.a ed Year book medical publishers inc; 1988. p. 247-301.

Dechow P. C. and Schwartz C. Elastic properties of the human mandibular corpus. In: Biodynamics in orthodontic ands orthopedic treatment, Craniofacial Growth Series. Ann Arbor, Michigan: Center of human growth and develoment the University of Michigan. 1992; 27: 299 -314.

Dechow PC, Nail GA, Schwartz Dabney CL. Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol 1993; 23(6): 291-306. Turner CH, Cowin S, Rho JY, Ashman RB, Rice JC. The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 1990; 23(6): 549-561.

Reinhardt RA, Krejci RF, Pao YC, Stannard JG. Dentin stresses in post-reconstructed teeth with diminishing bone support. J Dent Res 1983; 62(9): 1002-1008.

Attar N, Tam LE, McComb D. Mechanical and physical properties of contemporary dental luting agents. J Prosthet Dent 2003; 89: 127-134.

Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations – a 3D finite element analysis. Dent Mater 2002; 18: 295-303.

Christel P. Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in – vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 1989; 23: 45-61.

Holmes DC, Díaz-Arnold AM, Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent 1996; 75: 140-147.

Milot P, Stein S. Root fracture in endodontically treated teeth related to post selection and crown design. J Prosthet Dent 1993; 68: 428-435.

Sorensen J, Engelman M. Ferrule design and fracture resistance of endodontically treated teeth. J Prosthet Dent 1990; 63: 529-36.

Stankiewics NR, Wlison P. The ferrule effect: a literature review. Int End J 2002; 35: 575-581.

Botero JA, Salazar LM, Roldan S, Zapata U, Naranjo M. Investigación Comportamiento de las fuerzas generadas por un perno colado sobre una raíz por medio de un análisis tridimensional de elementos finitos. Rev CES Odontol 2004; 17(1): 51.

Tjan AH, Whang S. Resistance to root fracture of dowel channels with various thicknesses of buccal dentin walls. J Prosthet Dent 1985; 53(4): 496-500.

Fernández B, Bessone L. Evaluación de la resistencia a la fractura de dientes reconstruidos con diferentes sistemas de perno-muñón. Rev Int Protes Estomatol 2003; 5(4): 304-309.

Calao E, Vásquez M, Becerra F, Ossa J, Enríquez C, Fresneda E. El método de elementos finitos y su aplicación en la investigación odontológica. Rev Fac Odontol Univ Antioq 1999; 11(1): 44-49.

Heydecke G, Butz F, Hussein A, Strub J. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and core sytems. J Prosthet Dent 2002; 87: 438-445.

Alkkayan B, Gulmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent 2.002; 87: 431-437.

Asmussen E, Peutzfeldt A, Sahafi A. Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J Prosthet Dent 2005; 94: 321-329.

Sildoli GE, King PA, Setchell DJ. An in vitro evaluation of a carbon fiber-based post and core system. J Prosthet Dent 1997; 78: 5-9.

Li Li-li, Wang Zhong-yi, Bai Zhong-chenn, Mao Yong, Gao Bo, Xin Hai-tao, Zhou Bing, Zhang Young and Liu Bing. Three-dimensional finite element analysis of weakened roots restored with different cements in combination with titanium alloy posts. Chin Med J 2006; 119(4): 305-311.

Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel, glass and carbón posts in a maxillary incisor. Dent Mat 2005; 21: 709-715.

Ko CC, Chu CS, Chung KH, Lee MC. Effects of posts on dentin stress distribution in pulpless teeth. J Prosteh Dent 1992; 68: 421-427.

Ho MH, Lee SY, Chen HH, Lee MC. Three-dimensional finite element analysis of the effects of post on stress distribution in dentin. J Prosthet Dent 1994; 72: 367-372.

Pegoretti A, Fambri L, Zappini G, Bianchtti M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002; 23(13): 2667-2682.

Boschian PL, Guidotti S, Pietrabissa R, Gagliani M. Stress distribution in a post- restored tooth using the three- dimensional finite element method. J Oral Rehabil 2006; (33): 690-697.

Albuquerque R de Castro, Abreu PLT. Stress analysis of an upper central incisor restored with different posts. J Oral Rehabil 2003; 30: 936-943.

Rosentiel SF, Land MF, Fujimoto J. Restoration of the endodontically treated tooth. In: Contemporary fixed prosthodontics. 4.a ed. Elsevier; 2006. p. 336-378.

Duret B, Duret F, Reynaud M. Long-life physical property preservation and postendodontic rehabilitation with the composipost. Compend Contin Educ Dent Suppl. 1996; 20: S50-6.

Martínez-Insúa A, Silva L, Rilo B, Santana U. Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fibre post with a composite core. J Prosther Dent 1998; 80: 527-532.

Published

2009-09-21

How to Cite

Gómez-Mira, A. F., Chica-Arrieta, E., & Latorre-Correa, F. (2009). Analysis of stress distribution in different prefabricated intraradicular retention elements. Revista Facultad De Odontología Universidad De Antioquia, 20(1), 31–42. https://doi.org/10.17533/udea.rfo.2367

Most read articles by the same author(s)