Static behavior of a zirconia abutment subjected to artificial aging: finite element method


  • Nini Tatiana Suarez-B. Universidad de Antioquia
  • Julio César Escobar-Restrepo Universidad de Antioquia
  • Federico Latorre-Correa Universidad de Antioquia
  • Junes Abdul Villarraga-Ossa Universidad de Antioquia



Zirconia abutment, Zirconia aging, Static load, Finite element method


Introduction: some studies on the effect of zirconia aging mention a degree of reduction of zirconia’s fracture strength varying from 20 to 40%, while other authors argue that aging does not affect the material’s strength. The aim of this study was to evaluate the response of a zirconia abutment subjected to static loads and artificial aging using the finite element method (FEM). Methods: modeling of the Tapered ScrewVent implant and the zirconia Zimmer® abutment (Zimmer Dental1 900 Aston Avenue Carlsbad, CA 92008-7308 USA). Four models were designed: one with an implant of 3.7 mm in diameter and a 3.5 mm diameter abutment, another with an implant of 4.7 mm in diameter and a 4.5 mm diameter abutment, and other two with the same dimensions but changing the final fracture limit to 40%, analyzing the response of different components to specific loads. Results: models subjected to decreases in zirconia abutment fracture strength did not show zirconia differences in terms of von Mises values. A factor of safety allowed observing the working threshold of the zirconia abutment; failure occurred at values lower than 1. Conclusion: by modifying zirconia’s properties in order to simulate aging, the factor of safety decreases at values lower than 1. However, the applied forces under which the safety factor decreases are higher than normal masticatory forces.

= 119 veces | PDF (ESPAÑOL (ESPAÑA))
= 116 veces|


Download data is not yet available.

Author Biographies

Nini Tatiana Suarez-B., Universidad de Antioquia

DDM, Specialist in Comprehensive Dentistry of the Adult with a focus on Prosthodontics, School of Dentistry, Universidad de Antioquia.

Julio César Escobar-Restrepo, Universidad de Antioquia

DDM, Specialist with a focus on Prosthodontics, Associate Professor, School of Dentistry, Universidad de Antioquia, Medellín, Colombia

Federico Latorre-Correa, Universidad de Antioquia

DDM, Specialist with a focus on Prosthodontics, Professor, School of Dentistry, Universidad de Antioquia, Medellín, Colombia

Junes Abdul Villarraga-Ossa, Universidad de Antioquia

Mechanical Engineer, M.SC. in Mechanical Engineering, Professor, School of Mechanical Engineering, Universidad de Antioquia, Medellín, Colombia.


Koller B, Att W, Strub J-R. Survival rates of teeth, implants, and double crown-retained removable dental prostheses: a systematic literature review. Int J Prosthodont 2011; 24(2): 109-117.

Blatz MB, Bergler M, Holst S, Block MS. Zirconia abutments for single-tooth implants--rationale and clinical guidelines. J. Oral Maxillofac Surg 2009; 67(11 Suppl): 74-81.

Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007; 38(9):745-753.

Deville S, El Attaoui H, Chevalier J. Atomic force microscopy of transformation toughening in ceria-stabilized zirconia. J Eur Ceram Soc 2005; 25(13): 3089-3096.

Gremillard L, Chevalier J, Epicier T, Deville S, Fantozzi G. Modeling the aging kinetics of zirconia ceramics. J Eur Ceram Soc 2004; 24(13): 3483-3489.

Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006; 27(10): 2186-2192.

Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 2008; 4(5): 1440-1447.

Kohorst P, Butzheinen LO, Dittmer MP, Heuer W, Borchers L, Stiesch M. Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses. J Prosthodont 2010; 19(8): 606-613.

Sarafidou K, Stiesch M, Dittmer MP, Jörn D, Borchers L, Kohorst P. Load-bearing capacity of artificially aged zirconia fixed dental prostheses with heterogeneous abutment supports. Clinical oral investigations [Internet]. 2011;[fecha de acceso 13 de mayo de 2012]; disponible en:

Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci 2008; 116(4): 381-386.

Nothdurft FP, Doppler KE, Erdelt KJ, Knauber AW, Pospiech PR. Influence of artificial aging on the load-bearing capability of straight or angulated zirconia abutments in implant/tooth-supported fixed partial dentures. Int J Oral Maxillofac Implants 2010; 25(5): 991-998.

Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent 2006; 96(3): 154-164.

Vasudeva Gaurav. Finite element analysis: a boon to dental research. Internet Journal of Dental Science [Internet]. 2009; [fecha de acceso 13 de mayo de 2012]; 6(2). Disponible en:

DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. Role of the finite element model in dental implants. J Oral Implantol 2000; 26(2):77-81.

Misch CE. Dental Implant Prosthetics [CD-ROM]. Elsevier Health Sciences; 2004.

Lindhe J, Lang NP, Karring T. Clinical periodontology and implant dentistry: basic concepts. Blackwell Munksgaard; 2008.

Tapered Screw-Vent Implant System - Produc Catalog [Internet]. [Fecha de acceso 13 de mayo de 2012]; disponible en:

Okeson JP. Management of temporomandibular disorders and occlusion [CD-ROM]. Elsevier Health Sciences; 2007.

Barbucci R. Integrated Biomaterials Science [CD-ROM]; Springer; 2002.

Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 2006; 37(10): 649-658.

Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng 1998; A 43: 231-236.

Luthardt RG, Holzhüter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mat 2004; 20(7): 655-662.

RelyX Unicem 2 Automix - Technical Data Sheet [Internet]. [Fecha de acceso 13 de mayo de 2012]. Disponible en:

IPS e.max Ceram Scientific Documentation [Internet]. [Fecha de acceso 13 de mayo de 2012]. Disponible en:

Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mat 2010; 29(2): 138-146.

IPS e.max Press. Scientific Documentation [Internet]. [Fecha de acceso 13 de mayo de 2012]. Disponible en:

Alkan I, Sertgöz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent 2004; 91(4): 319-325.

Scortecci GM, Misch CE, Benner K. Biomechanics. En: Implants and restorative dentistry. London: Martin Dunitz; 2001. p. 120-140.

Won Joo. Zimmer Contour Ceramic Abutments Precision engineered for Strength, sthetics and clinical versatility. Zimmer Dental Inc [Internet]. 2008; [fecha de acceso junio 1 de 2012; disponible en:

Att W, Yajima N-D, Wolkewitz M, Witkowski S, Strub JR. Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments. Clin Implant Dent Relat Res 2012; 14: e196-e203.

Adatia ND, Bayne SC, Cooper LF, Thompson JY. Fracture resistance of yttria‐stabilized zirconia dental implant abutments. J Prosthet Dent 2008; 18(1): 17-22.

Kim S, Kim H-I, Brewer JD, Monaco Jr EA. Comparison of fracture resistance of pressable metal ceramic custom implant abutments with CAD/CAM commercially fabricated zirconia implant abutments. J Prosthet Dent 2009; 101(4): 226-330.

Albrecht T, Kirsten A, Kappert HF, Fischer H. Fracture load of different crown systems on zirconia implant abutments. Dent Mater 2011; 27(3): 298-303.

Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003; 90(4): 325-331.

Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent 2010; 30(1): 89-95.

Himmlová L, Dostálová T, Kácovský A, Konvic̆ková S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004; 91(1): 20-25.

Ding X, Liao S-H, Zhu X-H, Zhang X-H, Zhang L. Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants. Clin Implant Dent Relat Res 2009; 11(4): 279-287.

Paphangkorakit J, Osborn JW. The effect of pressure on a maximum incisal bite force in man. Arch Oral Biol 1997; 42(1): 11-17.

Koc D, Dogan A, Bek B. Bite force and influential factors on bite force measurements: a literature review. Eur J Dent 2010; 4(2): 223-232.



How to Cite

Suarez-B., N. T., Escobar-Restrepo, J. C., Latorre-Correa, F., & Villarraga-Ossa, J. A. (2015). Static behavior of a zirconia abutment subjected to artificial aging: finite element method. Revista Facultad De Odontología Universidad De Antioquia, 27(1), 30–62.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.