Comportamiento estático de un pilar de circona sometido a envejecimiento artificial: método de elementos finitos
DOI:
https://doi.org/10.17533/udea.rfo.v27n1a2Palabras clave:
Pilar de circona, Envejecimiento cricona, Carga estática, Método de elementos finitosResumen
Introducción: estudios sobre el efecto del envejecimiento de la circona refieren una disminución de la resistencia a la fractura de la circona que varía del 20 al 40%, mientras que otros argumentan que no influye en la resistencia del material. El propósito de este estudio fue evaluar la respuesta de un pilar de circona sometido a carga estática y envejecimiento artificial usando el método de elementos finitos (MEF). Métodos: se modelaron el implante Tapered Screw-Vent y el pilar de circona Zimmer® (Zimmer Dental1 900 Aston Avenue Carlsbad, CA 92008-7308 USA). Se diseñaron cuatro modelos: uno con implante de 3,7 de diámetro y pilar de 3,5 mm de diámetro, otro con un implante de 4,7 de diámetro y un pilar de 4,5 mm de diámetro, y otros dos con las mismas dimensiones pero modificando el limite último de fractura en un 40%. Se observó el comportamiento de los diferentes componentes ante la carga. Resultados: en los modelos donde se aplicó la disminución de la resistencia a la fractura del pilar de circona, no se observaron diferencias en la circona en cuanto a los valores de von Mises. Se generó un coeficiente de seguridad que permitió observar el umbral de trabajo del pilar de circona, a valores inferiores a 1 se presentó la falla. Conclusión: al modificar las propiedades de la circona, para simular el envejecimiento, el factor de seguridad disminuye a valores inferiores a 1. Sin embargo, las fuerzas aplicadas bajo las cuales disminuye el factor de seguridad son superiores a las fuerzas de la masticación normal.
Descargas
Citas
Koller B, Att W, Strub J-R. Survival rates of teeth, implants, and double crown-retained removable dental prostheses: a systematic literature review. Int J Prosthodont 2011; 24(2): 109-117.
Blatz MB, Bergler M, Holst S, Block MS. Zirconia abutments for single-tooth implants--rationale and clinical guidelines. J. Oral Maxillofac Surg 2009; 67(11 Suppl): 74-81.
Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007; 38(9):745-753.
Deville S, El Attaoui H, Chevalier J. Atomic force microscopy of transformation toughening in ceria-stabilized zirconia. J Eur Ceram Soc 2005; 25(13): 3089-3096.
Gremillard L, Chevalier J, Epicier T, Deville S, Fantozzi G. Modeling the aging kinetics of zirconia ceramics. J Eur Ceram Soc 2004; 24(13): 3483-3489.
Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006; 27(10): 2186-2192.
Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 2008; 4(5): 1440-1447.
Kohorst P, Butzheinen LO, Dittmer MP, Heuer W, Borchers L, Stiesch M. Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses. J Prosthodont 2010; 19(8): 606-613.
Sarafidou K, Stiesch M, Dittmer MP, Jörn D, Borchers L, Kohorst P. Load-bearing capacity of artificially aged zirconia fixed dental prostheses with heterogeneous abutment supports. Clinical oral investigations [Internet]. 2011;[fecha de acceso 13 de mayo de 2012]; disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21607567
Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci 2008; 116(4): 381-386.
Nothdurft FP, Doppler KE, Erdelt KJ, Knauber AW, Pospiech PR. Influence of artificial aging on the load-bearing capability of straight or angulated zirconia abutments in implant/tooth-supported fixed partial dentures. Int J Oral Maxillofac Implants 2010; 25(5): 991-998.
Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent 2006; 96(3): 154-164.
Vasudeva Gaurav. Finite element analysis: a boon to dental research. Internet Journal of Dental Science [Internet]. 2009; [fecha de acceso 13 de mayo de 2012]; 6(2). Disponible en: http://www.ispub.com/journal/the-internet-journal-of-dental-science/volume-6-number-2/finite-element-analysis-a-boon-to-dental-research.html
DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. Role of the finite element model in dental implants. J Oral Implantol 2000; 26(2):77-81.
Misch CE. Dental Implant Prosthetics [CD-ROM]. Elsevier Health Sciences; 2004.
Lindhe J, Lang NP, Karring T. Clinical periodontology and implant dentistry: basic concepts. Blackwell Munksgaard; 2008.
Tapered Screw-Vent Implant System - Produc Catalog [Internet]. [Fecha de acceso 13 de mayo de 2012]; disponible en: http://www.zimmerdental.com/pdf/lib_catImpSystems4860.pdf
Okeson JP. Management of temporomandibular disorders and occlusion [CD-ROM]. Elsevier Health Sciences; 2007.
Barbucci R. Integrated Biomaterials Science [CD-ROM]; Springer; 2002.
Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 2006; 37(10): 649-658.
Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng 1998; A 43: 231-236.
Luthardt RG, Holzhüter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mat 2004; 20(7): 655-662.
RelyX Unicem 2 Automix - Technical Data Sheet [Internet]. [Fecha de acceso 13 de mayo de 2012]. Disponible en: http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UF6EVsSyXTtnxf2l8TXEVtQEVs6EVs6EVs6E666666--&fn=rx_u2_auto_tds.pdf
IPS e.max Ceram Scientific Documentation [Internet]. [Fecha de acceso 13 de mayo de 2012]. Disponible en: http://www.infinident.com/ecomaXL/get_blob.php?name=IPS_e.max_Ceram_Scientific_Doc.pdf
Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mat 2010; 29(2): 138-146.
IPS e.max Press. Scientific Documentation [Internet]. [Fecha de acceso 13 de mayo de 2012]. Disponible en: http://www.ivoclarvivadent.com/zoolu-website/media/document/9808/IPS+e-max+Press
Alkan I, Sertgöz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent 2004; 91(4): 319-325.
Scortecci GM, Misch CE, Benner K. Biomechanics. En: Implants and restorative dentistry. London: Martin Dunitz; 2001. p. 120-140.
Won Joo. Zimmer Contour Ceramic Abutments Precision engineered for Strength, sthetics and clinical versatility. Zimmer Dental Inc [Internet]. 2008; [fecha de acceso junio 1 de 2012; disponible en: http://www.zimmerdental.com/pdf/lib_artContCeramicA985.pdf
Att W, Yajima N-D, Wolkewitz M, Witkowski S, Strub JR. Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments. Clin Implant Dent Relat Res 2012; 14: e196-e203.
Adatia ND, Bayne SC, Cooper LF, Thompson JY. Fracture resistance of yttria‐stabilized zirconia dental implant abutments. J Prosthet Dent 2008; 18(1): 17-22.
Kim S, Kim H-I, Brewer JD, Monaco Jr EA. Comparison of fracture resistance of pressable metal ceramic custom implant abutments with CAD/CAM commercially fabricated zirconia implant abutments. J Prosthet Dent 2009; 101(4): 226-330.
Albrecht T, Kirsten A, Kappert HF, Fischer H. Fracture load of different crown systems on zirconia implant abutments. Dent Mater 2011; 27(3): 298-303.
Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003; 90(4): 325-331.
Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent 2010; 30(1): 89-95.
Himmlová L, Dostálová T, Kácovský A, Konvic̆ková S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004; 91(1): 20-25.
Ding X, Liao S-H, Zhu X-H, Zhang X-H, Zhang L. Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants. Clin Implant Dent Relat Res 2009; 11(4): 279-287.
Paphangkorakit J, Osborn JW. The effect of pressure on a maximum incisal bite force in man. Arch Oral Biol 1997; 42(1): 11-17.
Koc D, Dogan A, Bek B. Bite force and influential factors on bite force measurements: a literature review. Eur J Dent 2010; 4(2): 223-232.
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2015 Revista Facultad de Odontología Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El Derecho de autor comprende los derechos morales y los derechos patrimoniales.
1. Los derechos morales: nacen en el momento de la creación de la obra, sin necesidad de registro. Corresponden al autor de manera personal e irrenunciable; además, son imprescriptibles, inembargables y no negociables. Son derechos morales el derecho a la paternidad de la obra, el derecho a la integridad de la obra, el derecho a conservar la obra inédita o publicarla bajo seudónimo o anónimamente, el derecho a modificar la obra, el derecho al arrepentimiento, y el derecho a la mención, según definiciones consignadas en el artículo 40 del Estatuto de propiedad intelectual de la Universidad de Antioquia (RESOLUCIÓN RECTORAL 21231 de 2005).
2. Los derechos patrimoniales: consisten en la facultad de disponer y aprovecharse económicamente de la obra por cualquier medio. Además, las facultades patrimoniales son renunciables, embargables, prescriptibles, temporales y transmisibles, y se causan con la publicación, o con la divulgación de la obra. Para el efecto de la publicación de artículos de la Revista de la Facultad de Odontología se entiende que la Universidad de Antioquia es portadora de los derechos patrimoniales del contenido de la publicación.
Yo, el(los) autor(es), y por mi(nuestro) intermedio, la Entidad para la que estoy(estamos) trabajando, transfiero(imos) de manera definitiva, total y sin limitación alguna a la Revista Facultad de Odontología Universidad de Antioquia, los derechos patrimoniales que le corresponden sobre el artículo presentado para ser publicado tanto física como digitalmente. Declaro(amos) además que este artículo ni parte de él ha sido publicado en otra revista.
Política de Acceso Abierto
Esta revista provee acceso libre inmediato a su contenido, bajo el principio de que poner la investigación a disposición del público de manera gratuita contribuye a un mayor intercambio de conocimiento global.
Licencia Creative Commons
La Revista facilita sus contenidos a terceros sin mediar para ello ningún tipo de contraprestación económica o embargo sobre los artículos. Para ello adopta el modelo de contrato de licenciamiento de la organización Creative Commons denominada Atribución – No comercial – Compartir igual (BY-NC-SA). Esta licencia les permite a otras partes distribuir, remezclar, retocar y crear a partir de la obra de modo no comercial, siempre y cuando nos den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.




