current state of calcium silicate cements in restorative dentistry: a review
DOI:
https://doi.org/10.17533/udea.rfo.v27n2a10Keywords:
Silicate cements, Dental cements, Dental materials, Dental pulp cappingAbstract
Calcium silicate cements have been used as dental materials for more than twenty years; however, their use in restorative dentistry is more recent. Better mechanical properties and shorter curing times make them suitable for a variety of applications in which they are used as a substitute of dentin, including direct/indirect pulp capping and as cavity base/liner. These materials may also be used to restore enamel temporarily. This article seeks to review the available scientific evidence with a focus on their applications in restorative dentistry. The information was gathered by reviewing original scientific research articles and literature reviews published in journals available in databases such as Medline/Pubmed and Scielo, along with technical information provided by the manufacturers of these cements. This article describes the composition, instructions for use, and curing reaction of calcium silicate cements, as well as the scientific evidence on their applications in restorative dentistry.
Downloads
References
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part I: chemical, physical, and antibacterial properties. J Endod 2010; 36(1): 16-27.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36(3): 400-413.
Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater 2014; 30(1): 50-61.
Hench LL. Bioactive ceramics. Ann N Y Acad Sci 1988; 523: 54-71.
Cao WP, Hench LL. Bioactive materials. Ceram Int 1996; 22(6): 493-507.
Laurent P, Camps J, De Meo M, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater 2008; 24(11): 1486-1494.
Kim JR, Nosrat A, Fouad AF. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent 2015; 43(2): 241-247.
Laurent P, Camps J, About I. Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012; 45(5): 439-448.
Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 2013; 46(9): 808-814.
Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011; 44(12): 1081-1087.
Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A et al. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod 2013; 39(6): 743-747.
Torabinejad M, White DJ, inventores; Loma Linda University, cecionario. Tooth filling material and method of use. Estados Unidos de Norteamérica US 5415547 A. 1995 May 16.
Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005; 21(4): 297-303.
Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 2005; 38(11): 834-842.
Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J Endod 2009; 35(2): 243-250.
Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999; 25(3): 197-205.
Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J 2008; 41(5): 408-417.
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995; 21(7): 349-353.
Oliveira IR, Pandolfelli VC, Jacobovitz M. Chemical, physical and mechanical properties of a novel calcium aluminate endodontic cement. Int Endod J 2010; 43(12): 1069-1076.
Asgary S, Shahabi S, Jafarzadeh T, Amini S, Kheirieh S. The properties of a new endodontic material. J Endod 2008; 34(8): 990-993.
Witherspoon DE. Vital pulp therapy with new materials: new directions and treatment perspectives--permanent teeth. Pediatr Dent 2008; 30(3): 220-224.
Aguilar P, Linsuwanont P. Vital pulp therapy in vital permanent teeth with cariously exposed pulp: a systematic review. J Endod 2011; 37(5): 581-587.
Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod 2009; 35(6): 777-790.
Naito T. Uncertainty remains regarding long-term success of mineral trioxide aggregate for direct pulp capping. J Evid Based Dent Pract 2010; 10(4): 250-251.
Hilton TJ, Ferracane JL, Mancl L. Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res 2013; 92(7 Suppl): 16S-22S.
Chailertvanitkul P, Paphangkorakit J, Sooksantisakoonchai N, Pumas N, Pairojamornyoot W, Leela-Apiradee N et al. Randomized control trial comparing calcium hydroxide and mineral trioxide aggregate for partial pulpotomies in cariously exposed pulps of permanent molars. Int Endod J 2014; 47(9): 835-842.
Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich-Ding PG, Wolff D et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 2010; 36(5): 806-813.
Leye Benoist F, Gaye Ndiaye F, Kane AW, Benoist HM, Farge P. Evaluation of mineral trioxide aggregate (MTA) versus calcium hydroxide cement (Dycal(®)) in the formation of a dentine bridge: a randomised controlled trial. Int Dent J 2012; 62(1): 33-39.
Marques MS, Wesselink PR, Shemesh H. Outcome of direct pulp capping with Mineral Trioxide Aggregate: a prospective study. J Endod 2015; 41(7): 1026-1031.
Septodont. BiodentineTM Brochure [internet]. [Consultado 2014 Nov 3] Disponible en: http://www.septodontusa.com/products/biodentine.
Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013; 29(2): e20-28.
Septodont. BiodentineTM Active Biosilicate TechnologyTM [internet]. [Consultado 2014 Mar 2]. Disponible en: http://www.septodontusa.com/sites/default/files/Biodentine.pdf.
Septodont. Biodentine, Active Biosilicate Technology. Package insert.
Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J 2012; 45(8): 737-743.
Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006; 32(6): 569-572.
Wiltbank KB, Schwartz SA, Schindler WG. Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod 2007; 33(10): 1235-1238.
Tanomaru-Filho M, Jorge EG, Guerreiro-Tanomaru JM, Goncalves M. Radiopacity evaluation of new root canal filling materials by digitalization of images. J Endod 2007; 33(3): 249-251.
Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt-Ford TR. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J 2004; 37(10): 699-704.
Grech L, Mallia B, Camilleri J. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J 2013; 46(7): 632-641.
Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent 2013; 41(7): 600-610.
Gandolfi MG, Siboni F, Polimeni A, Bossù M, Riccitiello F, Rengo S et al. In Vitro screening of the apatite-forming ability, biointeractivity and physical properties of a Tricalcium Silicate Material for endodontics and restorative dentistry. Dent J 2013; 1(4): 41-60.
Villat C, Tran XV, Pradelle-Plasse N, Ponthiaux P, Wenger F, Grosgogeat B et al. Impedance methodology: A new way to characterize the setting reaction of dental cements. Dent Mater 2010; 26(12): 1127-1132.
Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F et al. Effect of a calcium-silicate-based restorative cement on pulp repair. J Dent Res 2012; 91(12): 1166-1171.
Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF et al. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res 2015; 94(4): 562-568.
Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater 2014; 30(3): 343-349.
Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth: a prospective study. Clin Oral Investig 2013; 17(1): 243-249.
BISCO. Seal and Protect with TheraCal LC Pulp Capping Material and Liner [internet]. [Consultado 2014 17]. Disponible en: http://www.bisco.com/catalog/TheracalLC.pdf.
Gandolfi MG, Siboni F, Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J 2012; 45(6): 571-579.
Camilleri J, Laurent P, About I. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod 2014; 40(11): 1846-1154.
Camilleri J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater 2014; 30(7): 709-715.
Cannon M, Gerodias N, Viera A, Percinoto C, Jurado R. Primate pulpal healing after exposure and TheraCal application. J Clin Pediatr Dent 2014; 38(4): 333-337.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2015 Revista Facultad de Odontología Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
Copyright comprises moral and patrimonial rights.
1. Moral rights: are born at the moment of the creation of the work, without the need to register it. They belong to the author in a personal and unrelinquishable manner; also, they are imprescriptible, unalienable and non negotiable. Moral rights are the right to paternity of the work, the right to integrity of the work, the right to maintain the work unedited or to publish it under a pseudonym or anonymously, the right to modify the work, the right to repent and, the right to be mentioned, in accordance with the definitions established in article 40 of Intellectual property bylaws of the Universidad (RECTORAL RESOLUTION 21231 of 2005).
2. Patrimonial rights: they consist of the capacity of financially dispose and benefit from the work trough any mean. Also, the patrimonial rights are relinquishable, attachable, prescriptive, temporary and transmissible, and they are caused with the publication or divulgation of the work. To the effect of publication of articles in the journal Revista de la Facultad de Odontología, it is understood that Universidad de Antioquia is the owner of the patrimonial rights of the contents of the publication.
The content of the publications is the exclusive responsibility of the authors. Neither the printing press, nor the editors, nor the Editorial Board will be responsible for the use of the information contained in the articles.
I, we, the author(s), and through me (us), the Entity for which I, am (are) working, hereby transfer in a total and definitive manner and without any limitation, to the Revista Facultad de Odontología Universidad de Antioquia, the patrimonial rights corresponding to the article presented for physical and digital publication. I also declare that neither this article, nor part of it has been published in another journal.
Open Access Policy
The articles published in our Journal are fully open access, as we consider that providing the public with free access to research contributes to a greater global exchange of knowledge.
Creative Commons License
The Journal offers its content to third parties without any kind of economic compensation or embargo on the articles. Articles are published under the terms of a Creative Commons license, known as Attribution – NonCommercial – Share Alike (BY-NC-SA), which permits use, distribution and reproduction in any medium, provided that the original work is properly cited and that the new productions are licensed under the same conditions.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.