Revisión del estado actual de cementos de silicato de calcio en odontología restauradora

Autores/as

  • Camila Corral-Núñez Universidad de Chile
  • Eduardo Fernández-Godoy Universidad de Chile
  • Javier Martín Casielles Universidad de Chile
  • Juan Estay Universidad de Chile
  • Cristian Bersezio-Miranda Universidad de Chile
  • Patricia Cisternas-Pinto Universidad de Chile
  • Osmir Batista-de Oliveira UNESP

DOI:

https://doi.org/10.17533/udea.rfo.v27n2a10

Palabras clave:

Cementos de siicato, Cementos dentales, Materiales dentales, Recubrimiento de la pulpa dental

Resumen

Los cementos de silicato de calcio se han aplicado como materiales dentales desde hace más de veinte años; sin embargo, su uso en el área de la odontología restauradora es más reciente. Mejores propiedades mecánicas y menores tiempos de endurecimiento le permiten ser indicados para una variedad de aplicaciones en las que este material se utiliza como sustituto dentinario, entre ellas el recubrimiento pulpar directo/indirecto y como base/liner cavitario. A su vez, también se podría utilizar como material para restaurar esmalte de manera temporal. El presente artículo busca revisar la evidencia científica disponible, enfocándola a sus aplicaciones en odontología restauradora. La información se obtuvo a partir de artículos originales de investigación científica y revisiones de literatura, publicados en revistas disponibles en bases de datos como Medline/Pubmed y Scielo, junto a la información técnica otorgada por los fabricantes de estos cementos. El presente trabajo describe la composición, el modo de empleo, la reacción de fraguado y la evidencia científica sobre las aplicaciones de los cementos de silicato de calcio en odontología restauradora. 

|Resumen
= 2740 veces | PDF
= 1352 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Camila Corral-Núñez, Universidad de Chile

Odontólogo, MClinDent, PhD(c) UNESP, Instructor, Departamento de Odontología Restauradora, Facultad de Odontología, Universidad de Chile, Chile

Eduardo Fernández-Godoy, Universidad de Chile

DMD, PhD, Associate Professor, Department of Restorative Dentistry, School of Dentistry, Universidad de Chile, Chile

Javier Martín Casielles, Universidad de Chile

Odontólogo, PhD, Profesor Asistente, Departamento de Odontología Restauradora, Facultad de Odontología, Universidad de Chile, Chile

Juan Estay, Universidad de Chile

Odontólogo, PhD(c) UNESP, Ayudante, Departamento de Odontología Restauradora, Facultad de Odontología, Universidad de Chile, Chile

Cristian Bersezio-Miranda, Universidad de Chile

Odontólogo, PhD(c) UNESP, Ayudante, Departamento de Odontología Restauradora, Facultad de Odontología, Universidad de Chile, Chile

Patricia Cisternas-Pinto, Universidad de Chile

Odontólogo, MSc, Profesor Asistente, Departamento de Odontología Restauradora, Facultad de Odontología, Universidad de Chile, Chile

Osmir Batista-de Oliveira, UNESP

Odontólogo, PhD, Profesor Adjunto, Facultad de Odontología, UNESP, Brasil

Citas

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part I: chemical, physical, and antibacterial properties. J Endod 2010; 36(1): 16-27.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36(3): 400-413.

Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater 2014; 30(1): 50-61.

Hench LL. Bioactive ceramics. Ann N Y Acad Sci 1988; 523: 54-71.

Cao WP, Hench LL. Bioactive materials. Ceram Int 1996; 22(6): 493-507.

Laurent P, Camps J, De Meo M, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater 2008; 24(11): 1486-1494.

Kim JR, Nosrat A, Fouad AF. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent 2015; 43(2): 241-247.

Laurent P, Camps J, About I. Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012; 45(5): 439-448.

Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 2013; 46(9): 808-814.

Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011; 44(12): 1081-1087.

Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A et al. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod 2013; 39(6): 743-747.

Torabinejad M, White DJ, inventores; Loma Linda University, cecionario. Tooth filling material and method of use. Estados Unidos de Norteamérica US 5415547 A. 1995 May 16.

Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005; 21(4): 297-303.

Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 2005; 38(11): 834-842.

Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J Endod 2009; 35(2): 243-250.

Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999; 25(3): 197-205.

Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J 2008; 41(5): 408-417.

Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995; 21(7): 349-353.

Oliveira IR, Pandolfelli VC, Jacobovitz M. Chemical, physical and mechanical properties of a novel calcium aluminate endodontic cement. Int Endod J 2010; 43(12): 1069-1076.

Asgary S, Shahabi S, Jafarzadeh T, Amini S, Kheirieh S. The properties of a new endodontic material. J Endod 2008; 34(8): 990-993.

Witherspoon DE. Vital pulp therapy with new materials: new directions and treatment perspectives--permanent teeth. Pediatr Dent 2008; 30(3): 220-224.

Aguilar P, Linsuwanont P. Vital pulp therapy in vital permanent teeth with cariously exposed pulp: a systematic review. J Endod 2011; 37(5): 581-587.

Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod 2009; 35(6): 777-790.

Naito T. Uncertainty remains regarding long-term success of mineral trioxide aggregate for direct pulp capping. J Evid Based Dent Pract 2010; 10(4): 250-251.

Hilton TJ, Ferracane JL, Mancl L. Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res 2013; 92(7 Suppl): 16S-22S.

Chailertvanitkul P, Paphangkorakit J, Sooksantisakoonchai N, Pumas N, Pairojamornyoot W, Leela-Apiradee N et al. Randomized control trial comparing calcium hydroxide and mineral trioxide aggregate for partial pulpotomies in cariously exposed pulps of permanent molars. Int Endod J 2014; 47(9): 835-842.

Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich-Ding PG, Wolff D et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 2010; 36(5): 806-813.

Leye Benoist F, Gaye Ndiaye F, Kane AW, Benoist HM, Farge P. Evaluation of mineral trioxide aggregate (MTA) versus calcium hydroxide cement (Dycal(®)) in the formation of a dentine bridge: a randomised controlled trial. Int Dent J 2012; 62(1): 33-39.

Marques MS, Wesselink PR, Shemesh H. Outcome of direct pulp capping with Mineral Trioxide Aggregate: a prospective study. J Endod 2015; 41(7): 1026-1031.

Septodont. BiodentineTM Brochure [internet]. [Consultado 2014 Nov 3] Disponible en: http://www.septodontusa.com/products/biodentine.

Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013; 29(2): e20-28.

Septodont. BiodentineTM Active Biosilicate TechnologyTM [internet]. [Consultado 2014 Mar 2]. Disponible en: http://www.septodontusa.com/sites/default/files/Biodentine.pdf.

Septodont. Biodentine, Active Biosilicate Technology. Package insert.

Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J 2012; 45(8): 737-743.

Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006; 32(6): 569-572.

Wiltbank KB, Schwartz SA, Schindler WG. Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod 2007; 33(10): 1235-1238.

Tanomaru-Filho M, Jorge EG, Guerreiro-Tanomaru JM, Goncalves M. Radiopacity evaluation of new root canal filling materials by digitalization of images. J Endod 2007; 33(3): 249-251.

Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt-Ford TR. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J 2004; 37(10): 699-704.

Grech L, Mallia B, Camilleri J. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J 2013; 46(7): 632-641.

Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent 2013; 41(7): 600-610.

Gandolfi MG, Siboni F, Polimeni A, Bossù M, Riccitiello F, Rengo S et al. In Vitro screening of the apatite-forming ability, biointeractivity and physical properties of a Tricalcium Silicate Material for endodontics and restorative dentistry. Dent J 2013; 1(4): 41-60.

Villat C, Tran XV, Pradelle-Plasse N, Ponthiaux P, Wenger F, Grosgogeat B et al. Impedance methodology: A new way to characterize the setting reaction of dental cements. Dent Mater 2010; 26(12): 1127-1132.

Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F et al. Effect of a calcium-silicate-based restorative cement on pulp repair. J Dent Res 2012; 91(12): 1166-1171.

Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF et al. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res 2015; 94(4): 562-568.

Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater 2014; 30(3): 343-349.

Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth: a prospective study. Clin Oral Investig 2013; 17(1): 243-249.

BISCO. Seal and Protect with TheraCal LC Pulp Capping Material and Liner [internet]. [Consultado 2014 17]. Disponible en: http://www.bisco.com/catalog/TheracalLC.pdf.

Gandolfi MG, Siboni F, Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J 2012; 45(6): 571-579.

Camilleri J, Laurent P, About I. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod 2014; 40(11): 1846-1154.

Camilleri J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater 2014; 30(7): 709-715.

Cannon M, Gerodias N, Viera A, Percinoto C, Jurado R. Primate pulpal healing after exposure and TheraCal application. J Clin Pediatr Dent 2014; 38(4): 333-337.

Descargas

Publicado

2016-06-30

Cómo citar

Corral-Núñez, C., Fernández-Godoy, E., Casielles, J. M., Estay, J., Bersezio-Miranda, C., Cisternas-Pinto, P., & Batista-de Oliveira, O. (2016). Revisión del estado actual de cementos de silicato de calcio en odontología restauradora. Revista Facultad De Odontología Universidad De Antioquia, 27(2), 425–441. https://doi.org/10.17533/udea.rfo.v27n2a10