Genes involved in amelogenesis imperfecta. Part II

Authors

  • Víctor Hugo Simancas-Escorcia Université Paris Diderot-Universidad de Cartagena http://orcid.org/0000-0003-0910-030X
  • Alfredo Enrique Natera-Guarapo Universidad Central de Venezuela
  • María Gabriela Acosta-de Camargo Universidad de Carabobo

DOI:

https://doi.org/10.17533/udea.rfo.v30n2a9

Keywords:

Amelogenesis imperfecta, Tooth enamel, Tooth enamel proteins, Dental aesthetics, Genes, Syndrome

Abstract


Amelogenesis imperfecta (AI) is a condition of genetic origin that alters the structure of tooth enamel. AI may exist in isolation or associated with other systemic conditions as part of a syndromic AI. Our goal is to describe in detail the genes involved in syndromic AI, the proteins encoded by these genes, and their functions according to current scientific evidence. An electronic literature search was carried out from the year 2000 to December 2017, pre-selecting 1,573 articles, 40 of which were analyzed and discussed. The results indicate that mutations in 12 genes are responsible for syndromic AI: DLX3, COL17A1, LAMA3, LAMB3, FAM20A, TP63, CNNM4, ROGDI, LTBP3, FAM20C, CLDN16, CLDN19. These genes participate in the coding of proteins involved in phosphorylation, ion exchange, and production and degradation of the constituent elements of the mineral and organic phase of tooth enamel. The scientific evidence confirms that AI can be part of the syndrome and requires special attention from the medical-dental community.

|Abstract
= 231 veces | PDF
= 172 veces|

Downloads

Download data is not yet available.

Author Biographies

Víctor Hugo Simancas-Escorcia, Université Paris Diderot-Universidad de Cartagena

DDS. MSc in Cell Biology, Physiology and Pathology. PhD candidate in Physiology and Pathology, Université Paris-Diderot, France. Grupo Interdisciplinario de Investigaciones y Tratamientos Odontológicos Universidad de Cartagena, Colombia (GITOUC).

Alfredo Enrique Natera-Guarapo, Universidad Central de Venezuela

DDS. Professor in the Department of Operative Dentistry, Universidad Central de Venezuela. Head of Centro Venezolano de Investigación Clínica para el Tratamiento de la Fluorosis Dental y Defectos del Esmalte (CVIC FLUOROSIS)

María Gabriela Acosta-de Camargo, Universidad de Carabobo

DDS. Specialist in Pediatric Dentistry, Universidad Santa María. PhD in Dentistry, Universidad Central de Venezuela. Professor in the Department of Dentistry of the Child and Adolescent, Universidad de Carabobo.

References

Zheng L, Ehardt L, McAlpin B, About I, Kim D, Papagerakis S, et al. The tick tock of odontogenesis. Exp Cell Res. 2014 Jul 15; 325(2): 83–9. DOI: https://doi.org/10.1016/j.yexcr.2014.02.007

Prasad MK, Geoffroy V, Vicaire S, Jost B, Dumas M, Le Gras S, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet. 2016

Feb; 53(2): 98–110. DOI: http://dx.doi.org.gate2.inist.fr/10.1136/jmedgenet-2015-103302

Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007 Apr 4; 2:17. DOI : https://doi.org/10.1186/1750-1172-2-17

Witkop CJ. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988 Nov; 17(9-10): 547–53. DOI: https://doi.org/10.1111/j.1600-0714.1988.

tb01332.x

Oliveira AFB, Chaves AMB, Rosenblatt A. The influence of enamel defects on the development of early childhood caries in a population with low socioeconomic status: a longitudinal study. Caries Res. 2006; 40(4): 296–302. DOI: https://doi-org.gate2.inist.fr/10.1159/000093188

Uribe S. Early childhood caries--risk factors. Evid Based Dent. 2009; 10(2): 37–8. DOI: https://doi-org. gate2.inist.fr/10.1038/sj.ebd.6400642

Zhang Z, Tian H, Lv P, Wang W, Jia Z, Wang S, et al. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PloS One. 2015; 10(3): e0121288. DOI :https://doi.org/10.1371/journal.pone.0121288

Nieminen P, Lukinmaa P-L, Alapulli H, Methuen M, Suojärvi T, Kivirikko S, et al. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs. 2011; 194(1): 49–59. DOI: https://doi-org.gate2.inist.fr/10.1159/000322561

Kim Y-J, Seymen F, Koruyucu M, Kasimoglu Y, Gencay K, Shin TJ, et al. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta. Oral Dis. 2016 May; 22(4): 297–302. DOI : https://doi-org.gate2.inist.fr/10.1111/odi.12439

Yuen WY, Pasmooij AMG, Stellingsma C, Jonkman MF. Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm Venereol. 2012 Nov; 92(6): 695–6. DOI:10.2340/00015555-1341

McGrath JA, Gatalica B, Li K, Dunnill MG, McMillan JR, Christiano AM, et al. Compound heterozygosity for a dominant glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition. Am J Pathol. 1996 Jun; 148(6): 1787–96

Wright JT, Johnson LB, Fine JD. Development defects of enamel in humans with hereditary epidermolysis bullosa. Arch Oral Biol. 1993 Nov; 38(11): 945–55. DOI: 10.1016/0003-9969(93)90107-w

Nakamura H, Sawamura D, Goto M, Nakamura H, Kida M, Ariga T, et al. Analysis of the COL17A1 in nonHerlitz junctional epidermolysis bullosa and amelogenesis imperfecta. Int J Mol Med. 2006 Aug; 18(2): 333–7. DOI: https://doi.org/10.3892/ijmm.18.2.333

Pasmooij AMG, Pas HH, Jansen GHL, Lemmink HH, Jonkman MF. Localized and generalized forms of blistering in junctional epidermolysis bullosa due to COL17A1 mutations in the Netherlands. Br J Dermatol. 2007 May; 156(5): 861–70. DOI: https://doi.org/10.1111/j.1365-2133.2006.07730.x

Gostyńska KB, Yuen WY, Pasmooij AMG, Stellingsma C, Pas HH, Lemmink H, et al. Carriers with functional null mutations in LAMA3 have localized enamel abnormalities due to haploinsufficiency. Eur J Hum Genet.

Jan; 25(1): 94–9. DOI: https://doi.org/10.1038/ejhg.2016.136

Wang X, Zhao Y, Yang Y, Qin M. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PloS One. 2015; 10(3): e0116514. DOI: https://doi.org/10.1371/journal.

pone.0116514

Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, et al. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics. 2005 Jan 27; 6:11. DOI: https://doi.org/10.1186/1471-2164-6-11

Cui J, Xiao J, Tagliabracci VS, Wen J, Rahdar M, Dixon JE. A secretory kinase complex regulates extracellular protein phosphorylation. eLife. 2015 Mar 19; 4:e06120. DOI: https://doi.org/10.7554/eLife.06120.001

Cui J, Zhu Q, Zhang H, Cianfrocco MA, Leschziner AE, Dixon JE, et al. Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. eLife. 2017 22; 6. DOI: https://doi.org/10.7554/eLife.23990.001

Ohyama Y, Lin J-H, Govitvattana N, Lin I-P, Venkitapathi S, Alamoudi A, et al. FAM20A binds to and regulates FAM20C localization. Sci Rep. 2016 13; 6:27784. DOI: https://doi.org/10.1038/srep27784

Lignon G, Beres F, Quentric M, Rouzière S, Weil R, De La Dure-Molla M, et al. FAM20A Gene Mutation:

Amelogenesis or Ectopic Mineralization? Front Physiol. 2017; 8:267. DOI: https://doi.org/10.3389/fphys.2017.00267

de la Dure-Molla M, Quentric M, Yamaguti PM, Acevedo A-C, Mighell AJ, Vikkula M, et al. Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare

Dis. 2014 Jun 14; 9:84. DOI: https://doi.org/10.1186/1750-1172-9-84

Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. MolCell. 1998 Sep; 2(3): 305–16. DOI: https://doi-org.gate2.inist.fr/10.1016/S1097-2765(00)80275-0

Alves LU, Pardono E, Otto PA, Mingroni Netto RC. A novel c.1037C > G (p.Ala346Gly) mutation in TP63 as cause of the ectrodactyly-ectodermal dysplasia and cleft lip/palate (EEC) syndrome. Genet Mol Biol.

Mar; 38(1): 37–41. DOI: 10.1590/S1415-475738120140125

Kantaputra PN, Matangkasombut O, Sripathomsawat W. Split hand-split foot-ectodermal dysplasia and amelogenesis imperfecta with a TP63 mutation. Am J Med Genet A. 2012 Jan; 158A(1): 188–92. DOI:

https://doi-org.gate2.inist.fr/10.1002/ajmg.a.34356

Luder HU, Gerth-Kahlert C, Ostertag-Benzinger S, Schorderet DF. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene. PloS One. 2013; 8(10): e78529. DOI: https://doi.org/10.1371/journal.pone.0078529

Cherkaoui Jaouad I, Lyahyai J, Guaoua S, El Alloussi M, Zrhidri A, Doubaj Y, et al. Novel splice site mutation in CNNM4 gene in a family with Jalili syndrome. Eur J Med Genet. 2017 May; 60(5): 239–44. DOI: https://doi.org/10.1016/j.ejmg.2017.02.004

Jalili IK. Cone-rod dystrophy and amelogenesis imperfecta (Jalili syndrome): phenotypes and environs. Eye Lond Engl. 2010 Nov; 24(11): 1659–68. DOI: https://doi.org/10.1038/eye.2010.103

Topçu V, Alp MY, Alp CK, Bakır A, Geylan D, Yılmazoğlu MÖ. A new familial case of Jalili syndrome caused by a novel mutation in CNNM4. Ophthalmic Genet. 2017 Apr; 38(2): 161–6. DOI: https://doi-org.gate2.inist.fr/10.3109/13816810.2016.1164192

Schossig A, Wolf NI, Fischer C, Fischer M, Stocker G, Pabinger S, et al. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome. Am J Hum Genet. 2012 Apr 6; 90(4): 701–7. DOI: https://doi.org/10.1016/j.

ajhg.2012.02.012

Schossig A, Wolf NI, Kapferer I, Kohlschütter A, Zschocke J. Epileptic encephalopathy and amelogenesis imperfecta: Kohlschütter-Tönz syndrome. Eur J Med Genet. 2012 May; 55(5): 319–22. DOI: https://doi.

org/10.1016/j.ejmg.2012.02.008

Aswath N, Ramakrishnan SN, Teresa N, Ramanathan A. A novel ROGDI gene mutation is associated with Kohlschutter-Tonz syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Jan; 125(1): e8–11. DOI:

https://doi.org/10.1016/j.oooo.2017.09.016

Huckert M, Mecili H, Laugel-Haushalter V, Stoetzel C, Muller J, Flori E, et al. A Novel Mutation in the ROGDI Gene in a Patient with Kohlschütter-Tönz Syndrome. Mol Syndromol. 2014 Dec; 5(6): 293–8. DOI: https://doi-org.gate2.inist.fr/10.1159/000366252

Verloes A, Jamblin P, Koulischer L, Bourguignon JP. A new form of skeletal dysplasia with amelogenesis imperfecta and platyspondyly. Clin Genet. 1996 Jan; 49(1): 2–5. DOI: https://doi-org.gate2.inist.fr/10.1111/j.1399-0004.1996.tb04315.x

Huckert M, Stoetzel C, Morkmued S, Laugel-Haushalter V, Geoffroy V, Muller J, et al. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum Mol Genet. 2015 Jun 1; 24(11): 3038–49. DOI: https://doi-org.gate2.inist.fr/10.1093/hmg/ddv053

Dugan SL, Temme RT, Olson RA, Mikhailov A, Law R, Mahmood H, et al. New recessive truncating mutation in LTBP3 in a family with oligodontia, short stature, and mitral valve prolapse. Am J Med Genet A. 2015 Jun; 167(6): 1396–9. DOI: https://doi-org.gate2.inist.fr/10.1002/ajmg.a.37049

agliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012 Jun 1; 336(6085): 1150–3. DOI: 10.1126/science.1217817

Pollak AJ, Haghighi K, Kunduri S, Arvanitis DA, Bidwell PA, Liu G-S, et al. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc Natl Acad Sci U S A. 2017 22; 114(34): 9098–103. DOI: https://doi-org.gate2.inist.fr/10.1073/pnas.1706441114

Oya K, Ishida K, Nishida T, Sato S, Kishino M, Hirose K, et al. Immunohistochemical analysis of dentin matrix protein 1 (Dmp1) phosphorylation by Fam20C in bone: implications for the induction of biomineralization.Histochem Cell Biol. 2017 Mar; 147(3): 341–51. DOI: https://doi.org/10.1007/s00418-016-1490-z

Acevedo AC, Poulter JA, Alves PG, de Lima CL, Castro LC, Yamaguti PM, et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med Genet. 2015 Feb 21; 16:8. DOI: https://doi.org/10.1186/s12881-015-0154-5

Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad

Sci U S A. 2009 Sep 8; 106(36): 15350–5. DOI: https://doi-org.gate2.inist.fr/10.1073/pnas.0907724106

Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013 Apr; 93(2): 525–69. DOI: https://doi-org.gate2.inist.fr/10.1152/physrev.00019.2012

Bardet C, Courson F, Wu Y, Khaddam M, Salmon B, Ribes S, et al. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. J Bone Miner Res Off J Am Soc

Bone Miner Res. 2016 Mar; 31(3): 498–513. DOI: https://doi-org.gate2.inist.fr/10.1002/jbmr.2726

Lee NPY, Tong MK, Leung PP, Chan VW, Leung S, Tam P-C, et al. Kidney claudin-19: localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease. FEBS Lett. 2006 Feb 6; 580(3):

–31. DOI: https://doi-org.gate2.inist.fr/10.101/j.febslet.2006.01.019

Yamaguti PM, Neves F de AR, Hotton D, Bardet C, de La Dure-Molla M, Castro LC, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet. 2017; 54(1): 26–37. DOI: http://dx.doi.org.gate2.inist.fr/10.1136/jmedgenet-2016-103956

Downloads

Published

2019-10-11

How to Cite

Simancas-Escorcia, V. H., Natera-Guarapo, A. E., & Acosta-de Camargo, M. G. (2019). Genes involved in amelogenesis imperfecta. Part II. Revista Facultad De Odontología Universidad De Antioquia, 30(2), 236–247. https://doi.org/10.17533/udea.rfo.v30n2a9